# mos integrated circuit $\mu$ PD77210, 77213

# **16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR**

The  $\mu$ PD77210 and 77213 are 16-bit fixed-point digital signal processors (DSP).

Compared with the existing members of the  $\mu$ PD77111 Family, the  $\mu$ PD77210 Family consumes less power and is ideal for battery-driven mobile terminal applications such as PDAs and cellular telephones. The  $\mu$ P77210 Family is DSP is also compatible with the  $\mu$ PD77111 Family at the binary level.

The  $\mu$ PD77210 Family consists of the  $\mu$ PD77210 and 77213. Unless otherwise specified, the  $\mu$ PD77210 Family refers to the entire family. If there are some differences in function or operation among family products, they are described under their respective names.

The functions of the  $\mu$ PD77210 Family are described in detail in the following user's manuals. Refer to these manuals when designing your system.

μPD77210 Family User's Manual - Architecture: μPD77016 Family User's Manual - Instructions: In preparation U13116E

# **FEATURES**

NEC

• Instruction cycle (operating clock):

μPD77210 6.25 ns MIN. (160 MHz MAX.) μPD77213 8.33 ns MIN. (120 MHz MAX.)

# Memory

-Internal instruction memory:

 $\mu$ PD77210 :RAM 31.5 Kwords x 32 bits  $\mu$ PD77213 :RAM 15.5 Kwords x 32 bits ROM 64 Kwords x 32 bits

-Data memory:

μPD77210 :RAM 30 Kwords x 16 bits x 2 planes (X and Y data memories)
 External memory space 1 Mwords x 16 bits (common to X and Y data memories)
 μPD77213 :RAM 18 Kwords x 16 bits x 2 planes (X and Y data memories)
 ROM 32 Kwords x 16 bits x 2 planes (X and Y data memories)

External memory space 1 Mwords x 16 bits (common to X and Y data memories)

Peripheral

| -Audio serial interface: 1 channel         | -16-bit timer: 2 channels                |
|--------------------------------------------|------------------------------------------|
| -Time-division serial interface: 1 channel | -Peripheral-memory DMA transfer function |
| -16-bit host interface: 1 channel          | -SD (Secure Digital) card interface      |
| -16-bit general-purpose port               | :µPD77213 only                           |
|                                            |                                          |

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

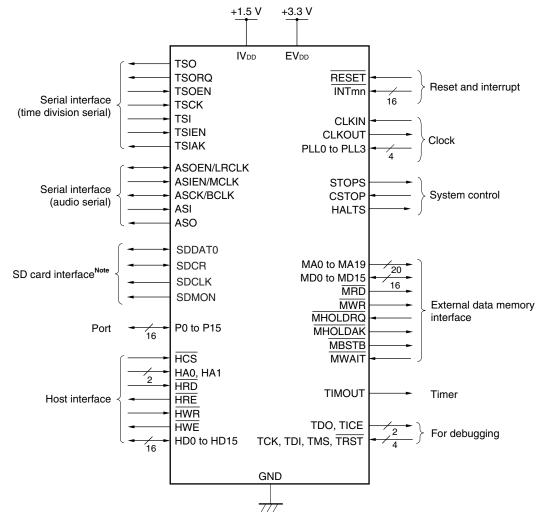
# Supply voltage

| -DSP core supply voltage: | 1.425 to 1.65 V (MAX. operating speed 120 MHz),                        |
|---------------------------|------------------------------------------------------------------------|
|                           | 1.55 to 1.65 V (MAX. operating speed 160 MHz) $\mu\text{PD77210}$ only |
| -I/O pin supply voltage:  | 2.7 to 3.6 V                                                           |


# ORDERING INFORMATION

| Parts Number       | Package                                     |
|--------------------|---------------------------------------------|
| μPD77210F1-DA2     | 161-pin plastic fine pitch BGA (10 x 10)    |
| μPD77210GJ-8EN     | 144-pin plastic LQFP (fine pitch) (20 x 20) |
| μPD77213F1-xxx-DA2 | 161-pin plastic fine pitch BGA (10 x 10)    |
| μPD77213GJ-xxx-8EN | 144-pin plastic LQFP (fine pitch) (20 x 20) |

Remark xxx indicates ROM code suffix.


BLOCK DIAGRAM

Z



μPD77210, 77213

# FUNCTIONAL PIN BLOCK



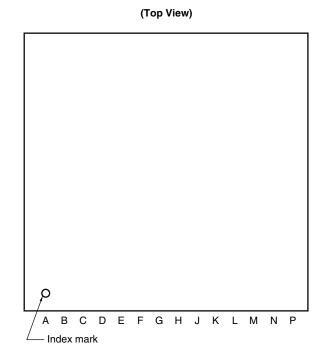
Note µPD77213 only

Caution Some port pins, host interface pins, serial interface pins, interrupt pins, and SD card interface pins are alternate function pins.

**Remark** m, n = 0 to 3

| Ζ |
|---|
| П |
|   |

# DSP FUNCTION LIST

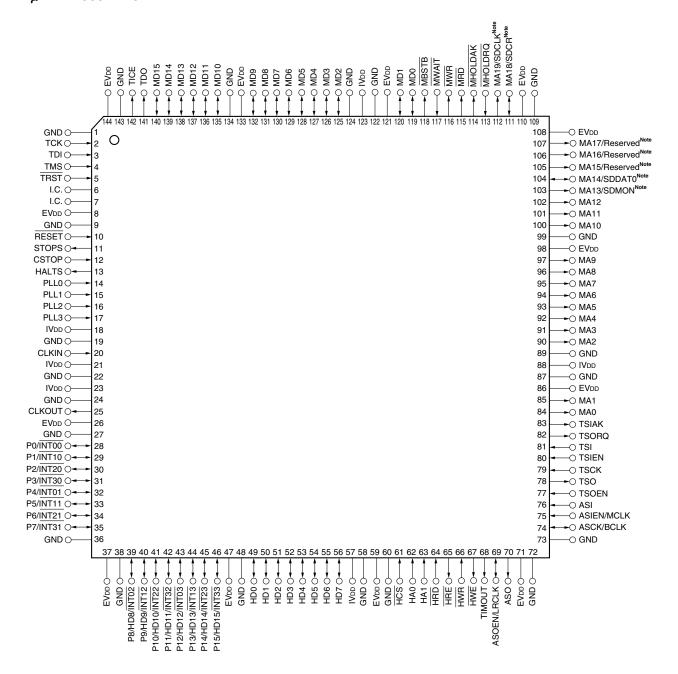

|                                                | Item                                          | μPD77110                                         | μPD77111                                      | μPD77112                     | μPD77113A           | μPD77114                             | μPD77115                                          | μPD77210                                        | μPD77213                                        |  |
|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------|---------------------|--------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| Memory                                         | Int. instruction RAM                          | 35.5 K × 32                                      | 1 K × 32                                      |                              | 3.5 K × 32          |                                      | 11.5 K × 32                                       | 31.5 K × 32                                     | 15.5 K × 32                                     |  |
| space                                          | Int. instruction ROM                          | None                                             | 31.75                                         | K × 32                       | 48 K × 32           |                                      | None                                              |                                                 | 64K × 32                                        |  |
| (words ×<br>bits)                              | Data RAM<br>(X/Y memory)                      | 24 K $	imes$ 16 each                             | <b>3 K</b> × 1                                | 16 each                      | 16 K × 16 each      |                                      | 16 K × 16 each                                    | 30 K × 16 each                                  | 18 K × 16 each                                  |  |
|                                                | Data ROM<br>(X/Y memory)                      | None                                             | 16 K ×                                        | 16 each                      | 32 K × 16 each      |                                      | None                                              |                                                 | $32 \text{ K} \times 16 \text{ each}$           |  |
|                                                | Ext. instruction memory                       |                                                  |                                               |                              | No                  | ne                                   | 1                                                 |                                                 | I                                               |  |
|                                                | Ext. data memory (X/Y<br>memory)              | 32  K 	imes 16  each                             | None                                          | 16 K × 16 each               | None                | $8 \text{ K} \times 16 \text{ each}$ | None                                              | 1 M×16                                          | 1 M $\times$ 16 (8 K $\times$ 16, using SD I/F) |  |
| Instruction cycle (at maximum operating speed) |                                               | 15.3 ns<br>(65 MHz)                              |                                               |                              | 13.3 ns<br>(75 MHz) |                                      | 6.25 ns<br>(160 MHz)                              | 8.33 ns<br>(120 MHz)                            |                                                 |  |
| Multiple                                       |                                               | Integer multiple<br>of ×1 to 8<br>(external pin) | Integer multiple of ×1 to 16<br>(mask option) |                              |                     |                                      | Integer multiple<br>of ×1 to 16<br>(external pin) | Integer multiple of ×10 to 64<br>(external pin) |                                                 |  |
| Peripheral                                     | Serial interface                              |                                                  |                                               | 2 channels<br>(speech CODEC) |                     | 1 channel<br>(audio CODEC)           | 2 channels (time-division, audio)                 |                                                 |                                                 |  |
|                                                | Host interface                                |                                                  | 8-bit bus                                     |                              |                     |                                      |                                                   | 16-bit bus                                      |                                                 |  |
|                                                | General-purpose<br>port (I/O<br>programmable) |                                                  |                                               | 4 bits                       |                     | 8 bits                               | 16 bits (some are alternative with host)          |                                                 |                                                 |  |
|                                                | Timer                                         |                                                  |                                               | None (1                      |                     |                                      | 1 channel<br>(16-bit resolution)                  | 2 channels<br>(16-bit resolution)               |                                                 |  |
|                                                | Others                                        | -                                                | -                                             | -                            | -                   | _                                    | SD card I/F                                       | -                                               | SD card I/F                                     |  |
| Supply voltage                                 |                                               |                                                  | DSP core: 2.5 V<br>I/O pins: 3 V              |                              |                     |                                      |                                                   | DSP core: 1.5 V<br>I/O pins: 3.3 V              |                                                 |  |
| Package                                        |                                               | 100-pin TQFP                                     | 80-pin TQFP<br>80-pin FBGA                    | 100-pin TQFP                 | 80-pin FBGA         | 100-pin TQFP                         | 80-pin TQFP<br>80-pin FBGA                        |                                                 | n FBGA<br>n LQFP                                |  |

# **PIN CONFIGURATIONS**

161-pin plastic fine pitch BGA (10 x 10) •μPD77210F1-DA2 •μPD77213F1-xxx-DA2

(Bottom View)

| 000000000000000000000000000000000000000 | 14<br>13 |
|-----------------------------------------|----------|
|                                         | 13       |
|                                         | 10       |
| 0000000000000000                        | 12       |
| 000000000000000                         | 11       |
| 0000 0000                               | 10       |
| 0000 0000                               | 9        |
| 0000 0000                               | 8        |
| 0000 0000                               | 7        |
| 0000 0000                               | 6        |
| 0000 00000                              | 5        |
| 000000000000000                         | 4        |
| 000000000000000                         | 3        |
| 000000000000000                         | 2        |
| 00000000000000                          | 1        |
| P N M L K J H G F E D C B A             | I        |




| Pin No. | Pin Name     | Pin No. | Pin Name       | Pin No. | Pin Name                    | Pin No. | Pin Name                      |
|---------|--------------|---------|----------------|---------|-----------------------------|---------|-------------------------------|
| A1      | NC           | C14     | EVDD           | H2      | HD7                         | M5      | TSORQ                         |
| A2      | NC           | D1      | P10/HD10/INT22 | H3      | HD6                         | M6      | MA0                           |
| A3      | P5/INT11     | D2      | P11/HD11/INT32 | H4      | GND                         | M7      | MA4                           |
| A4      | P2/INT20     | D3      | P12/HD12/INT03 | H11     | MD5                         | M8      | MA5                           |
| A5      | GND          | D4      | GND            | H12     | MD4                         | M9      | MA10                          |
| A6      | EVDD         | D5      | GND            | H13     | MD1                         | M10     | MA12                          |
| A7      | IVdd         | D6      | P1/INT10       | H14     | MD3                         | M11     | MA15/Reserved <sup>Note</sup> |
| A8      | IVdd         | D7      | GND            | J1      | EVDD                        | M12     | MA19/SDCLK <sup>Note</sup>    |
| A9      | PLL0         | D8      | GND            | J2      | HCS                         | M13     | MA18/SDCR <sup>Note</sup>     |
| A10     | STOPS        | D9      | GND            | J3      | HA1                         | M14     | EVDD                          |
| A11     | EVDD         | D10     | GND            | J4      | HWR                         | N1      | NC                            |
| A12     | TRST         | D11     | TMS            | J11     | GND                         | N2      | NC                            |
| A13     | NC           | D12     | TICE           | J12     | MD0                         | N3      | ASIEN/MCLK                    |
| A14     | NC           | D13     | MD12           | J13     | MBSTB                       | N4      | TSCK                          |
| B1      | NC           | D14     | MD15           | J14     | IVDD                        | N5      | TSIAK                         |
| B2      | NC           | E1      | P14/HD14/INT23 | K1      | HA0                         | N6      | MA1                           |
| B3      | P7/INT31     | E2      | P15/HD15/INT33 | K2      | HRD                         | N7      | MA2                           |
| B4      | P6/INT21     | E3      | P13/HD13/INT13 | К3      | TIMOUT                      | N8      | MA7                           |
| B5      | P3/INT30     | E4      | GND            | K4      | ASO                         | N9      | MA9                           |
| B6      | CLKOUT       | E5      | NC             | K11     | GND                         | N10     | MA11                          |
| B7      | IVdd         | E11     | GND            | K12     | MWR                         | N11     | MA16/Reserved <sup>Note</sup> |
| B8      | PLL3         | E12     | MD14           | K13     | MWAIT                       | N12     | MA17/Reserved <sup>Note</sup> |
| B9      | PLL1         | E13     | MD9            | K14     | EVDD                        | N13     | NC                            |
| B10     | CSTOP        | E14     | MD11           | L1      | HWE                         | N14     | NC                            |
| B11     | I.C.         | F1      | EVDD           | L2      | HRE                         | P1      | NC                            |
| B12     | тск          | F2      | HD1            | L3      | GND                         | P2      | NC                            |
| B13     | NC           | F3      | HD2            | L4      | GND                         | P3      | ASI                           |
| B14     | NC           | F4      | HD0            | L5      | TSIEN                       | P4      | TSO                           |
| C1      | EVDD         | F11     | MD10           | L6      | GND                         | P5      | TSI                           |
| C2      | P8/HD8/INT02 | F12     | MD13           | L7      | GND                         | P6      | EVDD                          |
| C3      | P9/HD9/INT12 | F13     | MD7            | L8      | MA8                         | P7      | IVdd                          |
| C4      | P4/INT01     | F14     | EVDD           | L9      | GND                         | P8      | МАЗ                           |
| C5      | P0/INT00     | G1      | HD3            | L10     | MA14/SDDAT0 <sup>Note</sup> | P9      | MA6                           |
| C6      | CLKIN        | G2      | HD5            | L11     | GND                         | P10     | EVDD                          |
| C7      | PLL2         | G3      | HD4            | L12     | MHOLDRQ                     | P11     | MA13/SDMON <sup>Note</sup>    |
| C8      | HALTS        | G4      | GND            | L13     | MRD                         | P12     | EVDD                          |
| C9      | RESET        | G11     | GND            | L14     | MHOLDAK                     | P13     | NC                            |
| C10     | I.C.         | G12     | MD8            | M1      | EVDD                        | P14     | NC                            |
| C11     | TDI          | G13     | MD2            | M2      | ASCK/BCLK                   |         |                               |
| C12     | TDO          | G14     | MD6            | M3      | ASOEN/LRCLK                 |         |                               |
| C13     | GND          | H1      | IVDD           | M4      | TSOEN                       |         |                               |

**Note** MA13 to MA19 pins of the  $\mu$ PD77213 are alternate function pins.

NEC

144-pin plastic LQFP (fine pitch) (20 x 20) (Top View) •μPD77210GJ-8EN •μPD77213GJ-xxx-8EN





| Pin No. | Pin Name | Pin No. | Pin Name       | Pin No. | Pin Name                      | Pin No. | Pin Name                   |
|---------|----------|---------|----------------|---------|-------------------------------|---------|----------------------------|
| 1       | GND      | 37      | EVDD           | 73      | GND                           | 109     | GND                        |
| 2       | тск      | 38      | GND            | 74      | ASCK/BCLK                     | 110     | EVDD                       |
| 3       | TDI      | 39      | P8/HD8/INT02   | 75      | ASIEN/MCLK                    | 111     | MA18/SDCR <sup>Note</sup>  |
| 4       | TMS      | 40      | P9/HD9/INT12   | 76      | ASI                           | 112     | MA19/SDCLK <sup>Note</sup> |
| 5       | TRST     | 41      | P10/HD10/INT22 | 77      | TSOEN                         | 113     | MHOLDRQ                    |
| 6       | I.C.     | 42      | P11/HD11/INT32 | 78      | TSO                           | 114     | MHOLDAK                    |
| 7       | I.C.     | 43      | P12/HD12/INT03 | 79      | тэск                          | 115     | MRD                        |
| 8       | EVDD     | 44      | P13/HD13/INT13 | 80      | TSIEN                         | 116     | MWR                        |
| 9       | GND      | 45      | P14/HD14/INT23 | 81      | TSI                           | 117     | MWAIT                      |
| 10      | RESET    | 46      | P15/HD15/INT33 | 82      | TSORQ                         | 118     | MBSTB                      |
| 11      | STOPS    | 47      | EVDD           | 83      | TSIAK                         | 119     | MD0                        |
| 12      | CSTOP    | 48      | GND            | 84      | MA0                           | 120     | MD1                        |
| 13      | HALTS    | 49      | HD0            | 85      | MA1                           | 121     | EVDD                       |
| 14      | PLL0     | 50      | HD1            | 86      | EVDD                          | 122     | GND                        |
| 15      | PLL1     | 51      | HD2            | 87      | GND                           | 123     | IVdd                       |
| 16      | PLL2     | 52      | HD3            | 88      | IVdd                          | 124     | GND                        |
| 17      | PLL3     | 53      | HD4            | 89      | GND                           | 125     | MD2                        |
| 18      | IVdd     | 54      | HD5            | 90      | MA2                           | 126     | MD3                        |
| 19      | GND      | 55      | HD6            | 91      | MA3                           | 127     | MD4                        |
| 20      | CLKIN    | 56      | HD7            | 92      | MA4                           | 128     | MD5                        |
| 21      | IVdd     | 57      | IVDD           | 93      | MA5                           | 129     | MD6                        |
| 22      | GND      | 58      | GND            | 94      | MA6                           | 130     | MD7                        |
| 23      | IVdd     | 59      | EVDD           | 95      | MA7                           | 131     | MD8                        |
| 24      | GND      | 60      | GND            | 96      | MA8                           | 132     | MD9                        |
| 25      | CLKOUT   | 61      | HCS            | 97      | MA9                           | 133     | EVDD                       |
| 26      | EVDD     | 62      | HA0            | 98      | EVDD                          | 134     | GND                        |
| 27      | GND      | 63      | HA1            | 99      | GND                           | 135     | MD10                       |
| 28      | P0/INT00 | 64      | HRD            | 100     | MA10                          | 136     | MD11                       |
| 29      | P1/INT10 | 65      | HRE            | 101     | MA11                          | 137     | MD12                       |
| 30      | P2/INT20 | 66      | HWR            | 102     | MA12                          | 138     | MD13                       |
| 31      | P3/INT30 | 67      | HWE            | 103     | MA13/SDMON <sup>Note</sup>    | 139     | MD14                       |
| 32      | P4/INT01 | 68      | TIMOUT         | 104     | MA14/SDDAT0 <sup>Note</sup>   | 140     | MD15                       |
| 33      | P5/INT11 | 69      | ASOEN/LRCLK    | 105     | MA15/Reserved <sup>Note</sup> | 141     | TDO                        |
| 34      | P6/INT21 | 70      | ASO            | 106     | MA16/Reserved <sup>Note</sup> | 142     | TICE                       |
| 35      | P7/INT31 | 71      | EVDD           | 107     | MA17/Reserved <sup>Note</sup> | 143     | GND                        |
| 36      | GND      | 72      | GND            | 108     | EVDD                          | 144     | EVDD                       |

**Note** MA13 to MA19 pins of the  $\mu$ PD77213 are alternate function pins.

NEC

# Pin Name

| ASCK        | :Audio Serial Clock Input/Output   | MWAIT     | :External Data Memory Access Wait          |
|-------------|------------------------------------|-----------|--------------------------------------------|
| ASI         | :Audio Serial Data Input           |           | Input                                      |
| ASIEN       | :Audio Serial Input Enable         | NC        | :Non-Connection                            |
| ASO         | :Audio Serial Data Output          | P0 to P15 | :Port                                      |
| ASOEN       | :Audio Serial Output Enable        | PLL0-PLL3 | :PLL Multiple Rate Set                     |
| BCLK        | :Bit Clock Input/Output            | Reserved  | :Reserved                                  |
| CLKIN       | :Clock Input                       | RESET     | :Reset                                     |
| CLKOUT      | :Clock Output                      | SDCLK     | :SD Card Clock Output                      |
| CSTOP       | :Clear Stop Mode                   | SDCR      | :SD Card Command Output/Response           |
| EVDD        | :Power Supply for I/O Pins         |           | Input                                      |
| GND         | :Ground                            | SDDAT0    | :SD Card Data Input/Output                 |
| HALTS       | :Halt Status Signal Output         | SDMON     | :SD Card Access Monitor                    |
| HD0 to HD15 | :Host Data Bus                     | STOPS     | :Stop Status Signal Output                 |
| HCS         | :Host Chip Select                  | ТСК       | :Test Clock Input                          |
| HA0, HA1    | :Host Data Access                  | TDI       | :Test Data Input                           |
| HRD         | :Host Read                         | TDO       | :Test Data Output                          |
| HRE         | :Host Read Enable                  | TICE      | :Test In-Circuit Emulator                  |
| HWE         | :Host Write Enable                 | TIMOUT    | :Timer Time Out Monitor Output             |
| HWR         | :Host Write                        | TMS       | :Test Mode Select                          |
| I.C.        | Internal Connection                | TRST      | :Test Reset                                |
| IVdd        | :Power Supply for DSP Core         | TSCK      | :Time Division Multiplex Serial Clock      |
| INTmn       | :Interrupt (m,n=0 to 3)            |           | Input                                      |
| LRCLK       | :Left Right Clock Input/Output     | TSI       | :Time Division Multiplex Serial Data Input |
| MA0 to MA19 | :External Data Memory Address Bus  | TSIAK     | :Time Division Multiplex Serial Input      |
| MBSTB       | :External Data Memory Bus Strobe   |           | Acknowledge                                |
| MCLK        | :Master Clock Input                | TSIEN     | :Time Division Multiplex Serial Input      |
| MD0 to MD15 | :External Data Memory Bus          |           | Enable                                     |
| MHOLDAK     | :External Data Memory Bus Hold     | TSO       | :Time Division Multiplex Serial Data       |
|             | Acknowledge                        |           | Output                                     |
| MHOLDRQ     | :External Data Memory Bus Hold     | TSOEN     | :Time Division Multiplex Serial Output     |
|             | Request                            |           | Enable                                     |
| MRD         | :External Data Memory Read Output  | TSORQ     | :Time Division Multiplex Serial Output     |
| MWR         | :External Data Memory Write Output |           | Request                                    |
|             |                                    |           |                                            |

# CONTENTS

| 1. | PIN FUNCTIONS                                                   | 13 |
|----|-----------------------------------------------------------------|----|
|    | 1.1 Description of Pin Functions                                | 13 |
|    | 1.2 Connection of Unused Pins                                   | 21 |
|    | 1.2.1 Connection of functional pins                             | 21 |
|    | 1.2.2 Connection of non-functional pin                          | 22 |
|    |                                                                 |    |
| 2. | . FUNCTIONAL OUTLINE                                            |    |
|    | 2.1 Program Control Unit                                        | 23 |
|    | 2.1.1 CPU control                                               | 23 |
|    | 2.1.2 Interrupt control                                         |    |
|    | 2.1.3 Loop control stack                                        |    |
|    | 2.1.4 PC stack                                                  |    |
|    | 2.1.5 Clock control                                             |    |
|    | 2.1.6 Instruction memory                                        |    |
|    | 2.2 Operation Unit                                              |    |
|    | 2.2.1 General-purpose registers (R0 to R7)                      |    |
|    | 2.2.2 Multiply accumulator (MAC)                                |    |
|    | 2.2.3 Arithmetic logic unit (ALU)                               |    |
|    | 2.2.4 Barrel shifter (BSFT)                                     |    |
|    | 2.3 Data Memory Unit                                            |    |
|    | 2.3.1 Data memory                                               |    |
|    | 2.3.2 Data addressing unit                                      |    |
|    | 2.4 Peripheral Unit                                             |    |
|    | 2.4.1 Serial interface (SIO)                                    |    |
|    | 2.4.2 Host interface (HIO)                                      |    |
|    | 2.4.3 General-purpose I/O port (PIO)                            |    |
|    | 2.4.4 External memory interface (MIO)                           |    |
|    | 2.4.5 Timers (TIM1 and TIM2)                                    |    |
|    | 2.4.6 Interrupt controller (INTC)<br>2.4.7 DMA controller (PMT) |    |
|    | 2.4.7 DWA controller (PMT)                                      |    |
|    |                                                                 |    |
|    | 2.4.9 Debug interface (IEIO)                                    | 20 |
| 2  | CLOCK GENERATOR                                                 | 97 |
| 0. |                                                                 |    |
| 4. | RESET FUNCTION                                                  |    |
|    | 4.1 Hardware Reset                                              |    |
|    |                                                                 | 20 |
| 5. | FUNCTION OF BOOT-UP ROM                                         |    |
|    | 5.1 Boot at Reset                                               | -  |
|    | 5.1.1 Memory boot                                               |    |
|    | 5.1.2 Host boot                                                 |    |
|    | 5.1.3 Serial boot                                               |    |
|    | 5.2 Reboot                                                      |    |
|    | 5.2.1 Memory reboot                                             |    |

# NEC

| 5.2.2 Host reboot                     |    |
|---------------------------------------|----|
| 5.2.3 Serial reboot                   |    |
|                                       |    |
| 6. STANDBY MODE                       |    |
| 6.1 Halt Mode                         |    |
| 6.2 Stop Mode                         |    |
| 7. MEMORY MAP                         |    |
| 7.1 Instruction Memory                |    |
| 7.1.1 Instruction memory map          |    |
| 7.1.2 Interrupt vector table          |    |
| 7.2 Data Memory                       |    |
| 7.2.1 Data memory map                 |    |
| 7.2.2 Internal peripherals            |    |
|                                       |    |
| 8. GENERAL-PURPOSE PORT AND INTERRUPT |    |
| 8.1 General-purpose Port Pins         |    |
| 8.2 Interrupt Pin                     |    |
| 9. INSTRUCTION                        | 39 |
| 9.1 Outline of Instruction            |    |
| 9.2 Instruction Set and Its Operation |    |
|                                       |    |
| 10. ELECTRICAL SPECIFICATIONS         |    |
|                                       |    |
| 11. PACKAGE DRAWINGS                  |    |
|                                       |    |

# **1. PIN FUNCTIONS**

Because the pin numbers differ depending on the package, see the column for the package to be used in the tables below.

# 1.1 Description of Pin Functions

#### • Power supply pins

| Pin Name         | Pin No.                                                                               |                                                                                           | I/O | Function                                                                                    | Alternate |
|------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|-----------|
|                  | 144-pin LQFP                                                                          | 161-pin FBGA                                                                              |     |                                                                                             | Pin       |
| IVdd             | 18,21,23,57,<br>88,123                                                                | A7,A8,B7,H1,<br>J14, P7                                                                   | _   | Power supply for DSP core (+1.5 V)<br>These pins supply power to the DSP core.              | -         |
| EV <sub>DD</sub> | 8,26,37,47,59,<br>71,86,98,108,<br>110,121,133,<br>144                                | A6,A11,C1,<br>C14,F1,F14,<br>J1,K14,M1,<br>M14,P6,P10,<br>P12                             | _   | Power supply for I/O (+3.3 V)<br>These pins supply power to the external interface<br>pins. | _         |
| GND              | 1,9,19,22,24,<br>27,36,38,48,<br>58,60,72,73,<br>87,89,99,109,<br>122,124,134,<br>143 | A5,C13,D4,D5,<br>D7,D8,D9,D10,<br>E4,E11,G4,<br>G11,H4,J11,<br>K11,L3,L4,L6,<br>L7,L9,L11 | _   | Ground<br>These are ground pins.                                                            | _         |

**Remark** Please supply voltage to the  $IV_{DD}$  and  $EV_{DD}$  pins simultaneously.

# Clock and system control pins

| Pin Name        | Pin          | No.          | I/O    | Function                                                                                                                                                                                                                                                                                                                                                                                                                  | Alternate |
|-----------------|--------------|--------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                 | 144-pin LQFP | 161-pin FBGA |        |                                                                                                                                                                                                                                                                                                                                                                                                                           | Pin       |
| CLKIN           | 20           | C6           | Input  | Clock input<br>This pin inputs a clock to operate the $\mu$ PD77210<br>Family.                                                                                                                                                                                                                                                                                                                                            | _         |
| CLKOUT          | 25           | B6           | Output | Internal system clock output<br>This pin outputs the internal system clock that is the<br>clock input from CLKIN and which is multiplied by the<br>PLL circuit.                                                                                                                                                                                                                                                           | _         |
| PLL0 to<br>PLL3 | 14 to 17     | A9,B9,C7,B8  | Input  | PLL multiple setting input         These pins set a clock multiple of the PLL circuit.         • PLL3: PLL2: PLL1: PLL0         0000: x10       0001: x12       0010: x14         0011: x16       0100: x18       0101: x20         0110: x22       0111: x24       1000: x26         1001: x28       1010: x30       1011: x32         1100: x40       1101: x48       1110: x56         1111: x64       1000       1000 | Ι         |
| HALTS           | 13           | C8           | Output | HALT mode status output<br>This pin is asserted active in halt mode and stop<br>mode.                                                                                                                                                                                                                                                                                                                                     | -         |
| STOPS           | 11           | A10          | Output | Stop mode status output<br>This pin is asserted active in stop mode.                                                                                                                                                                                                                                                                                                                                                      | -         |
| CSTOP           | 12           | B10          | Input  | Stop mode clear signal input<br>Stop mode is cleared when this pin is asserted<br>active.                                                                                                                                                                                                                                                                                                                                 | -         |

# • Reset and interrupt pins

| Pin Name | Pin          | No.          | I/O   | Function                                                                             | Alternate |
|----------|--------------|--------------|-------|--------------------------------------------------------------------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA |       |                                                                                      | Pin       |
| RESET    | 10           | C9           | Input | Internal system reset signal input<br>This pin initializes the $\mu$ PD77210 Family. | _         |
| INT00    | 28           | C5           | Input | Maskable external interrupt input                                                    | P0        |
| INT01    | 32           | C4           | Input | These pins input external interrupts.                                                | P4        |
| INT02    | 39           | C2           | Input |                                                                                      | P8/HD8    |
| INT03    | 43           | D3           | Input |                                                                                      | P12/HD12  |
| INT10    | 29           | D6           | Input |                                                                                      | P1        |
| INT11    | 33           | A3           | Input |                                                                                      | P5        |
| INT12    | 40           | СЗ           | Input |                                                                                      | P9/HD9    |
| INT13    | 44           | E3           | Input |                                                                                      | P13/HD13  |
| INT20    | 30           | A4           | Input |                                                                                      | P2        |
| INT21    | 34           | B4           | Input |                                                                                      | P6        |
| INT22    | 41           | D1           | Input |                                                                                      | P10/HD10  |
| INT23    | 45           | E1           | Input |                                                                                      | P14/HD14  |
| INT30    | 31           | B5           | Input |                                                                                      | P3        |
| INT31    | 35           | В3           | Input |                                                                                      | P7        |
| INT32    | 42           | D2           | Input |                                                                                      | P11/HD11  |
| INT33    | 46           | E2           | Input |                                                                                      | P15/HD15  |

#### • External data memory interface

| Pin Name                       | Pin                                             | Pin No.                                                                                  |                | Function                                                                                                                                                                                                                   | Alternate                           |
|--------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                | 144-pin LQFP                                    | 161-pin FBGA                                                                             |                |                                                                                                                                                                                                                            | Pin                                 |
| MA0 to<br>MA19 <sup>Note</sup> | 84, 85,<br>90 to 97,<br>100 to 107,<br>111, 112 | M6,N6,N7,P8,<br>M7,M8,P9,N8,<br>L8,N9,M9,N10,<br>M10,P11,L10,<br>M11,N11,N12,<br>M13,M12 | Output<br>(3S) | Address bus of external data memory<br>These pins output an address when the external data<br>memory is accessed.                                                                                                          | SDCLK,<br>SDCR,<br>SDDAT0,<br>SDMON |
| MD0 to<br>MD15                 | 119,120,<br>125 to 132,<br>135 to 140           | J12,H13,G13,<br>H14,H12,H11,<br>G14,F13,G12,<br>E13,F11,E14,<br>D13,F12,E12,<br>D14      | I/O<br>(3S)    | 16-bit data bus<br>These pins input/output data when the external data<br>memory is accessed.                                                                                                                              | _                                   |
| MWR                            | 116                                             | К12                                                                                      | Output<br>(3S) | Write output<br>This pin outputs a write strobe signal for the external<br>data memory.                                                                                                                                    | -                                   |
| MRD                            | 115                                             | L13                                                                                      | Output<br>(3S) | Read output<br>This pin outputs a read strobe signal for the external<br>data memory.                                                                                                                                      | _                                   |
| MHOLDAK                        | 114                                             | L14                                                                                      | Output         | Hold acknowledge signal<br>This pin goes low when the external device is<br>granted use of the external data memory bus of the<br>μPD77210 Family.                                                                         | -                                   |
| MHOLDRQ                        | 113                                             | L12                                                                                      | Input          | Hold request signal<br>The external device inputs a low level to this pin<br>when it uses the external data memory bus of the<br>$\mu$ PD77210 Family.                                                                     | _                                   |
| MWAIT                          | 117                                             | К13                                                                                      | Input          | <ul> <li>Wait signal input</li> <li>This pin inserts wait cycles when the μPD77210</li> <li>Family accesses the external data memory.</li> <li>0: Inserts wait cycles.</li> <li>1: Does not insert wait cycles.</li> </ul> | _                                   |
| MBSTB                          | 118                                             | J13                                                                                      | Output         | Bus strobe signal<br>This pin goes low while the $\mu$ PD77210 Family uses<br>the external data memory bus.                                                                                                                | _                                   |

Note MA13 to MA19 pins of the  $\mu$ PD77213 are alternate function pins.

**Remark** Those pins marked "3S" in the above table enter the high-impedance state under the following conditions:

MA0 to MA19, MRD, and MWR: When the bus is released (MHOLDAK = low level)

MD0 to MD15: When the external data memory is not accessed and when the bus is released  $(\overline{MHOLDAK} = low level)$ 

• Timer

| Pin Name | Pin No.      |              | I/O    | Function                                                                  | Alternate |
|----------|--------------|--------------|--------|---------------------------------------------------------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA |        |                                                                           | Pin       |
| TIMOUT   | 68           | КЗ           | Output | Time out monitor<br>This pin is asserted active when the timer times out. | -         |

# Serial interface

| Pin Name | Pir          | No.          | I/O    | Function                                                 | Alternate |
|----------|--------------|--------------|--------|----------------------------------------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA |        |                                                          | Pin       |
| ASCK/    | 74           | M2           | I/O    | Audio serial clock input/output                          | -         |
| BCLK     |              |              |        | ASCK:Audio serial clock input                            |           |
|          |              |              |        | BCLK:Serial clock I/O                                    |           |
| ASO      | 70           | К4           | Output | Audio serial data output                                 | -         |
|          |              |              | (3S)   |                                                          |           |
| ASI      | 76           | P3           | Input  | Audio serial data input                                  | _         |
| ASOEN/   | 69           | МЗ           | I/O    | Audio serial output enable/left right clock input output | -         |
| LRCLK    |              |              |        | ASOEN: Audio serial output enable input                  |           |
|          |              |              |        | LRCLK:Left right clock I/O                               |           |
| ASIEN/   | 75           | N3           | Input  | Audio serial input enable/master clock input output      | -         |
| MCLK     |              |              |        | ASIEN:Audio serial input enable input                    |           |
|          |              |              |        | MCLK:Master clock input (in master mode)                 |           |
| TSCK     | 79           | N4           | Input  | Clock input for time division serial                     | -         |
| TSO      | 78           | P4           | Output | Time-division serial data output                         | -         |
|          |              |              | (3S)   |                                                          |           |
| TSI      | 81           | P5           | Input  | Time-division serial data input                          | -         |
| TSORQ    | 82           | M5           | Output | Time-division serial output request                      | _         |
| TSOEN    | 77           | M4           | Input  | Time-division serial output enable                       | _         |
| TSIEN    | 80           | L5           | Input  | Time-division serial input enable                        | -         |
| TSIAK    | 83           | N5           | Output | Time-division serial input acknowledge                   | _         |

**Remark** Those pins marked "3S" in the above table enter the high-impedance state when data transmission is completed and when the hardware reset (RESET) signal is input.

# Host interface

| Pin Name       | Pin          | Pin No.                     |             | Function                                                                                                                                                                                                                                                                                                                                                                                    | Alternate                                                                                 |
|----------------|--------------|-----------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                | 144-pin LQFP | 161-pin FBGA                |             |                                                                                                                                                                                                                                                                                                                                                                                             | Pin                                                                                       |
| HA1            | 63           | J3                          | Input       | <ul> <li>Host address 1</li> <li>This pin specifies a register that is accessed by the host interface pins (HD7 to HD0, or HD15 to HD0).</li> <li>1: The host interface status register (HST) is accessed.</li> <li>0: The host transmit data register (HDT (out)) is accessed for read (HRD = 0) and the host receive data register (HDT (in)) is accessed for write (HWR = 0).</li> </ul> | _                                                                                         |
| HAO            | 62           | К1                          | Input       | <ul> <li>Host address 0</li> <li>This pin specifies a register that is accessed by HD7 to HD0 in 8-bit mode. This pin is invalid in 16-bit mode.</li> <li>1: Bits 15 to 8 of HST, HDT (in), and HDT (out) are accessed.</li> <li>0: Bits 7 to 0 of HST, HDT (in), and HDT (out) are accessed.</li> </ul>                                                                                    | _                                                                                         |
| HCS            | 61           | J2                          | Input       | Chip select input                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                         |
| HRD            | 64           | К2                          | Input       | Host read input                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                         |
| HWR            | 66           | J4                          | Input       | Host write input                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                         |
| HRE            | 65           | L2                          | Output      | Host read enable output                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                         |
| HWE            | 67           | L1                          | Output      | Host write enable output                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                         |
| HD0 to<br>HD7  | 49 to 56     | F4,F2,F3,G1,<br>G3,G2,H3,H2 | I/O<br>(3S) | 8-bit host data bus<br>These pins constitute a host data bus in 8-bit host<br>mode. Access to 16-bit data for input/output is<br>controlled by the HA0 pin, and the data is accessed<br>two times such that it is divided into two blocks of 8-<br>bit data.<br>In 16-bit mode, the lower 8 bits of the data are<br>input/output.                                                           | _                                                                                         |
| HD8 to<br>HD15 | 39 to 46     | C2,C3,D1,D2,<br>D3,E3,E1,E2 | 1/O<br>(3S) | Host data bus<br>These pins constitute a host data bus in 16-bit host<br>mode. They input/output 16-bit data with HD0 to<br>HD7.                                                                                                                                                                                                                                                            | P8 to P15/<br>INT02,<br>INT12,<br>INT22,<br>INT32,<br>INT03,<br>INT13,<br>INT23,<br>INT33 |

**Remark** Those pins marked "3S" in the above table enter the high-impedance state while the host interface is not being accessed.

#### Pin Name Pin No. I/O Alternate Function Pin 144-pin LQFP 161-pin FBGA P0 28 C5 I/O General-purpose I/O port INT00 P1 29 D6 I/O INT10 A4 P2 30 INT20 I/O B5 P3 31 I/O INT30 P4 C4 32 I/O INT01 P5 33 INT11 A3 I/O P6 34 B4 I/O INT21 Ρ7 35 В3 I/O INT31 C2 INT02/HD8 P8 39 I/O P9 СЗ INT12/HD9 40 I/O P10 41 D1 INT22/HD10 I/O P11 INT32/HD11 42 D2 I/O P12 43 D3 INT03/HD12 I/O INT13/HD13 P13 44 E3 I/O P14 45 E1 I/O INT23/HD14 P15 46 E2 I/O INT33/HD15

# • I/O port

#### • Debugging interface

| Pin Name | Pin          | Pin No.      |                | Function                                                         | Alternate |
|----------|--------------|--------------|----------------|------------------------------------------------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA |                |                                                                  | Pin       |
| TDO      | 141          | C12          | Output<br>(3S) | For debugging<br>This interface pins are used when a debugger is | -         |
| TICE     | 142          | D12          | Output         | used.                                                            | -         |
| тск      | 2            | B12          | Input          |                                                                  | _         |
| TDI      | 3            | C11          | Input          |                                                                  | _         |
| TMS      | 4            | D11          | Input          |                                                                  | _         |
| TRST     | 5            | A12          | Input          |                                                                  | _         |

**Remark** Those pins marked "3S" in the above table enter the high-impedance state while the debugging interface is not being accessed.

# •SD card interface (µPD77213 only)

| Pin Name | Pin No.      |               | I/O    | Function                                         | Alternate |
|----------|--------------|---------------|--------|--------------------------------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA  |        |                                                  | Pin       |
| SDCLK    | 112          | M12           | Output | SD card clock output                             | MA19      |
|          |              |               |        | Leave this pin open.                             |           |
| SDCR     | 111          | M13           | I/O    | SD cord command/response                         | MA18      |
|          |              |               | (3S)   | Input: Response                                  |           |
|          |              |               |        | Output: Command                                  |           |
|          |              |               |        | • Leave pull-up.                                 |           |
| SDDAT0   | 104          | L10           | I/O    | SD card data input/output                        | MA14      |
|          |              |               | (3S)   | Input: Read data                                 |           |
|          |              |               |        | Output: Write data                               |           |
|          |              |               |        | Leave pull-up.                                   |           |
| SDMON    | 103          | P11           | Output | SD card interface access monitor                 | MA13      |
|          |              |               |        | This pin outputs a high level when the SD card   |           |
|          |              |               |        | interface is being accessed.                     |           |
|          |              |               |        | 1: SD card interface being accessed              |           |
|          |              |               |        | 0: SD card interface not being accessed          |           |
| Reserved | 105 to 107   | M11, N11, N12 | _      | Reserved for future function expansion.          | MA15 to   |
|          |              |               |        | This pin becomes high impedance when the SD card | MA17      |
|          |              |               |        | interface is being used.                         |           |

**Remark** Those pins marked "3S" in the above table enter the high-impedance state when the SD card interface is not being accessed.

# Others

| Pin Name | Pin          | Pin No.      |   | Function               | Alternate |
|----------|--------------|--------------|---|------------------------|-----------|
|          | 144-pin LQFP | 161-pin FBGA |   |                        | Pin       |
| I.C.     | 6, 7         | B11, C10     | - | Internally connected.  | -         |
|          |              |              |   | Leave these pins open. |           |
| NC       | _            | A1,A2,A13,   | - | No connection.         | -         |
|          |              | A14,B1,B2,   |   | Leave these pins open. |           |
|          |              | B13,B14,E5,  |   |                        |           |
|          |              | N1,N2,N13,   |   |                        |           |
|          |              | N14,P1,P2,   |   |                        |           |
|          |              | P13,P14      |   |                        |           |

Caution If any signal is input to these pins or if these pins are read, the correct operation of the  $\mu$ PD77210 Family is not guaranteed.

# 1.2 Connection of Unused Pins

# 1.2.1 Connection of functional pins

Connect the unused pins as shown in the table below.

| Pin Name                      | I/O    | Recommended Connection                                                                 |
|-------------------------------|--------|----------------------------------------------------------------------------------------|
| STOPS, HALTS                  | Output | Leave open.                                                                            |
| CSTOP                         | Input  | Connect to GND via a pull-down resistor.                                               |
| CLKOUT                        | Output | Leave open.                                                                            |
| P0 to P15                     | I/O    | Connect to EV <sub>DD</sub> via a pull-up resistor or to GND via a pull-down resistor. |
| HD0 to HD7 <sup>Note 1</sup>  | I/O    | Connect to EV <sub>DD</sub> via a pull-up resistor or to GND via a pull-down resistor. |
| HA0, HA1                      | Input  | Connect to EV <sub>DD</sub> via a pull-up resistor or to GND via a pull-down resistor. |
| HCS, HRD, HWR                 | Input  | Connect to EV <sub>DD</sub> via a pull-up resistor.                                    |
| HRE, HWE                      | Output | Leave open.                                                                            |
| TIMOUT                        | Output | Leave open.                                                                            |
| ASCK, TSCK                    | Input  | Connect to EV <sub>DD</sub> via a pull-up resistor or to GND via a pull-down resistor. |
| ASI, TSI                      | Input  |                                                                                        |
| ASIEN, TSIEN                  | Input  | Connect to GND via a pull-down resistor.                                               |
| ASOEN, TSOEN,                 | Input  |                                                                                        |
| LRCLK                         |        |                                                                                        |
| ASO, TSO                      | Output | Leave open.                                                                            |
| TSORQ                         | Output |                                                                                        |
| TSIAK                         | Output |                                                                                        |
| MA0 to MA19                   | Output | Leave open.                                                                            |
| MD0 to MD15 <sup>Note 2</sup> | I/O    | Connect to $EV_{DD}$ via a pull-up resistor or to GND via a pull-down resistor.        |
| MRD, MWR                      | Output | Leave open.                                                                            |
| MHOLDRQ                       | Input  | Connect to EVDD via a pull-up resistor.                                                |
| MBSTB, MHOLDAK                | Output | Leave open.                                                                            |
| MWAIT                         | Input  | Connect to EV <sub>DD</sub> via a pull-up resistor.                                    |
| ТСК                           | Input  | Connect to GND via a pull-down resistor.                                               |
| TDO, TICE                     | Output | Leave open.                                                                            |
| TMS, TDI                      | Input  | Leave open (this pin is internally pulled up).                                         |
| TRST                          | Input  | Leave open (this pin is internally pulled down).                                       |

**Notes 1.** These pins may left opened if the HCS, HRD,and HWR are fixed to the high level. However, connect these pins as recommended in the HALT and STOP modes when the power consumption must be lowered.

2. These pins may leave opened if the external data memory is not accessed in the program. However, connect these pins as recommended in the HALT and STOP modes when the power consumption must be lowered.

Caution Unused alternate-function pins should be handled in accordance with the processing specified for the pin function of the initial setting.

# 1.2.2 Connection of non-functional pin

| Pin name | I/O | Recommended Connection |
|----------|-----|------------------------|
| I.C.     | -   | Leave open.            |
| NC       | -   | Leave open.            |

# 2. FUNCTIONAL OUTLINE

# 2.1 Program Control Unit

This unit controls the execution of  $\mu$ PD77210 Family by executing instructions and controlling branching, loop, interrupts, clock, and standby mode.

# 2.1.1 CPU control

A three-stage pipeline architecture is employed so that all instructions, except branch instructions and some others, can be executed with one system clock.

#### 2.1.2 Interrupt control

The interrupt control circuit services the interrupt requests input to the interrupt controller by an external pin  $(\overline{INTmn})$  or internal peripherals (such as the serial interface, host interface, timer, and DMA controller). The interrupt of each interrupt source can be individually enabled or disabled. In addition, multiple interrupts are also supported.

#### 2.1.3 Loop control stack

A loop function without any hardware overhead is realized. A 4-level loop stack is provided to support multiple loops.

#### 2.1.4 PC stack

A 15-level PC stack that stacks the program counter supports multiple interrupts/subroutine calls.

#### 2.1.5 Clock control

A PLL and a divider are internally provided as a clock generator so that an externally input clock is multiplied or divided and supplied as the operating clock to the  $\mu$ PD77210 Family. The multiple of the PLL can be set by using external pins (PLL0 to PLL3) within a range of ×10 to 64. The division ratio can be set by using a register in a range of ÷1 to 16.

The clock control register (CLKC) controls the power (ON/OFF) to the PLL, selects a clock source, controls the output divider, and controls the output of the CLKOUT pin.

Two types of standby modes are available so that the power consumption can be reduced when the  $\mu$ PD77210 Family is standing by.

•HALT mode: Current consumption falls to several mA upon execution of the HALT instruction.

This mode is released by an interrupt or hardware reset.

•STOP mode: Current consumption falls to hundreds of  $\mu A^{Note}$  upon execution of the STOP instruction.

This mode is released by hardware reset or inputting a signal to CSTOP pin.

Note When the PLL is stopped

#### 2.1.6 Instruction memory

Of the instruction RAM, 64 words are allocated as interrupt vectors.

The  $\mu$ PD77210 is provided with an instruction RAM of 31.5 Kwords. The  $\mu$ PD77213 is provided with an instruction RAM of 15.5 Kwords and instruction ROM of 64 Kwords.

A boot-up ROM that boots up the instruction RAM is also provided, and the instruction RAM can be initialized or rewritten by means of a memory boot (booting from an internal or external data space), host boot (booting via a host interface), or serial boot (booting via a serial interface).

#### 2.2 Operation Unit

This unit performs multiplication, addition, logic, and shift operations, and consists of a 40-bit multiply accumulator, a 40-bit data ALU, a 40-bit barrel shifter, and eight 40-bit general-purpose registers.

#### 2.2.1 General-purpose registers (R0 to R7)

These eight 40-bit registers input/output operands and load/store data to/from data memory.

Each register consists of three parts: R0L to R7L (bits 15 to 0), R0H to R7H (bits 31 to 16), and R0E to R7E (bits 39 to 32). Depending on the type of the operation, RnL, RnH, and RnE are used either as one register or in combination.

#### 2.2.2 Multiply accumulator (MAC)

The multiply accumulator performs multiplication of two 16-bit data items and addition or subtraction between the result of the multiplication and one 40-bit data item, and then outputs 40-bit data.

A shifter (MSFT: MAC shifter) is provided at the preceding stage of the MAC, so that the 40-bit data that is to be added to or subtracted from the multiplication result can be arithmetically shifted 1 bit or 16 bits to the right before addition or subtraction.

#### 2.2.3 Arithmetic logic unit (ALU)

The ALU accepts one or two 40-bit data items as input, performs an arithmetic or logical operation, and then outputs 40-bit data.

#### 2.2.4 Barrel shifter (BSFT)

The BFST accepts 40-bit data items as input, shifts the data to the left or right by an arbitrary number of bits, and then outputs 40-bit data. The data can be shifted to the right arithmetically, in which case the sign of the data is extended, or logically in which case 0 is inserted starting from the MSB.

#### 2.3 Data Memory Unit

The data memory unit consists of two planes of data memory spaces and two pairs of data addressing units.

#### 2.3.1 Data memory

Two data memory planes (X data memory and Y data memory) are provided. The data memory space includes a 64-word peripheral area.

The  $\mu$ PD77210 has a data RAM consisting of 30 Kwords × 2 planes. The  $\mu$ PD77213 has a data RAM consisting of 18 Kwords × 2 planes, and has a data ROM consisting of 32 Kwords × 2 planes.

In addition, They also have an external data memory interface that is used to connect an external 1 Mword data memory to the device.

#### 2.3.2 Data addressing unit

An independent data addressing unit is provided for each of the X and Y data memory spaces.

Each data addressing unit has four data pointers (DPn), four index registers (DNn), one module register (DMX or DMY), and an address ALU.

#### 2.4 Peripheral Unit

The peripheral unit has serial interfaces, a host interface, general-purpose I/O ports, timers, an external memory interface, and SD card interface ( $\mu$ PD77213 only). All these internal peripherals are mapped to the X and Y data memory spaces and are accessed as memory-mapped I/Os by the program.

#### 2.4.1 Serial interface (SIO)

Two serial interface channels, an audio serial interface (ASIO) and a time-division serial interface (TDMSIO), are provided.

The audio serial interface can be used in either of two modes: audio mode and standard mode. The standard mode is compatible with the existing  $\mu$ PD77111 Family. The audio mode is compatible with the  $\mu$ PD77115.

The features of the audio mode are as follows:

- Mode: Master mode and slave mode
  - Master mode: Supports master clock input (MCLK), bit clock output (BCLK), LR clock output (LRCLK), 256 fs, 384 fs, and 512 fs.
- Slave mode: Bit clock input (BCLK) and LR clock input (LRCLK)
- Frame format: 32- or 64-bit audio formats (LRCLK format)
- Handshake: Handshaking with external devices by a dedicated frame signal (LRCLK) and with the internal circuitry by polling, wait, or interrupt

The standard mode has the following features:

- •Serial clock: Supplied from an external source to each channel. The clock is shared for input and output by each channel.
- •Frame length: 8 or 16 bits, with MSB or LSB first selected for each channel.
- •Handshake: Handshaking with the external device by using a dedicated status signal and with the internal circuitry by polling, wait, or interrupt.

The time-division serial interface divides the serial input/output signal into 1 to 32 time slots and allows several devices to share the serial bus. Because the T1 and E1 frame signals are considered. The time slot can be extended from 1 to 128.

#### 2.4.2 Host interface (HIO)

This is a parallel port that inputs/outputs data from/to an external host CPU and DMA controller. It can be used in either 8-bit parallel mode or 16-bit parallel mode. In the  $\mu$ PD77210 Family, 16-bit registers are mapped to memory for input data, output data, and status. Handshaking with an external device is performed by using a dedicated status signal, and the internal circuitry handshaking is done by means of polling, wait, or interrupts.

The 8-bit parallel mode is compatible with the existing members of the  $\mu$ PD77111 Family.

In 16-bit parallel mode, some port pins are used as host interface pins.

#### 2.4.3 General-purpose I/O port (PIO)

This is a 16-bit I/O port that can be set to either input or output mode in 1-bit units.

The external pins alternate between interrupt pins and host interface pins. By setting the mode of 8 bits of the port to host interface pin mode, the host interface can be set in the 16-bit parallel mode.

#### 2.4.4 External memory interface (MIO)

This interface accesses an external 1 Mwords data memory area in either of two modes: direct access and DMA access modes. In DMA access mode, access is made via a memory-mapped register.

In direct access mode, the data paging register (DPR) is set to 0x3F and a page area is accessed as an access window. An address of the external memory consists of 20 bits with the 8-bit value of the index register added as bits 12 to 19.

In DMA access mode, the address is automatically updated when a memory-mapped register is accessed. The address is updated in an increment addressing mode in which the address is simply incremented, or in twodimensional addressing mode in which an offset is added to each line length.

The number of wait cycles to be inserted when the external memory is accessed can be specified by a register (MWAIT), within a range of 1 to 15. In addition, wait cycles can also be inserted by using the MWAIT pin.

#### 2.4.5 Timers (TIM1 and TIM2)

The  $\mu$ PD77210 Family has two timer channels.

These timers can be used as interval timers, event counters, watchdog timers, and free-run timers.

The clock input to the timers is selected from the system clock, serial clock (ASCK or TSCK), external interrupt (INT00, INT10, INT20, or INT30), or output of each timer.

The count value is 16 bits and the clock input by the prescaler can be divided by 1, 2, 4, 8, 16, 32, 64, or 128.

#### 2.4.6 Interrupt controller (INTC)

The interrupt controller has functions for selecting and masking interrupt signals. It controls the interrupt signal to be input to the DSP core.

#### 2.4.7 DMA controller (PMT)

The DMA controller realizes data transfer between the peripherals and memory (peripheral-memory transfer) in the background. It mitigates the software overhead generated by interrupt processing of the data input/output via SIO, HIO, MIO, and SDCIF ( $\mu$ PD77213 only).

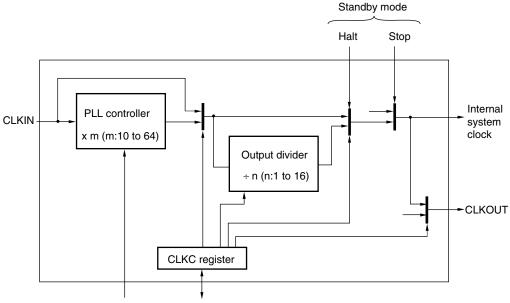
Data of 14 Kwords at addresses 0x0000 to 0x37FF of the internal data RAM can be transferred by means of DMA.

#### 2.4.8 SD card interface (SDCIF)

The  $\mu$ PD77213 supports SD Card interface. This interface is for access of SD card. It supports the DMA transfer for input data to internal data RAM. The SD card is accessed by using a dedicated routine of system ROM.

# 2.4.9 Debug interface (IEIO)

The  $\mu$ PD77210 Family has the following functions that conform to the JTAG (Joint Test Action Group) interface as a debug interface.


A device conforming to JTAG has an access port dedicated to testing and can be tested independently of the internal logic.

The  $\mu$ PD77210 Family has registers and a control circuit for in-circuit emulation, in addition to the instruction registers, bypass registers, and boundary scan registers that are required by the JTAG Recommendation.

# 3. CLOCK GENERATOR

NEC

The clock generator generates an internal system clock based on the external clock input from the CLKIN pin and supplies the clock to the  $\mu$ PD77210 Family. The configuration of the clock generator is as illustrated below.



PLL0 to PLL3 Peripheral bus

The PLL is stopped immediately after reset. The clock input from the CLKIN pin is directly supplied to the  $\mu$ PD77210 Family internal circuitry and bootup commences. The PLL is started up in the boot routine and booting is carried out via the PLL output clock (except in the case of non-boot or external memory boot). In the case of non-boot or external memory boot, when booting has finished, after the PLL is started up by setting the CLKC register from the user program, the clock source must be switched to the PLL, in which case the PLL must be locked. Note that 300  $\mu$ s are required between when the PLL is started up and when it is locked.

The PLL multiplication rate is specified by the external pins PLL0 to PLL3. The PLL also has two lock range modes: 80 to 120 MHz and 120 to 160 MHz. The mode to be used is specified by the P3 pin during booting. The CLKC register is used to control turning on/off the PLL, select the clock source (external clock/multiplied clock/divided or non-divided output), control resetting the output divider, set the division ratio, and enable/disable CLKOUT pin output.

When the output divider is selected, the high-level width of the clock output by the CLKOUT pin is equivalent to 1 cycle of the normal operation (which means that the clock does not have a duty factor of 50%).

In halt mode, output of the divider circuit is automatically selected as the clock source. When the divider circuit is selected, the clock is not changed even if halt mode is set.

In stop mode, the system clock supplied to the internal circuitry is masked. Because the PLL is not stopped automatically, it can recover from stop mode without PLL lock time. It is necessary to set the CLKC register by the program to stop the PLL.

# 4. RESET FUNCTION

The device is initialized when a low level of the specified width is input to the RESET pin.

#### 4.1 Hardware Reset

The internal circuitry of the  $\mu$ PD77210 Family is initialized when the RESET pin is asserted active (low level) for a specific period. When the RESET pin is then deasserted inactive (high level), booting of the instruction RAM is performed in accordance with the status of the port pins (P0, P1, P2, and P3), and then processing is executed starting from the instruction at address 0x200 (reset entry) of the instruction memory.

# 5. FUNCTION OF BOOT-UP ROM

The instruction RAM is booted up by using the internal boot-up ROM when power is applied or when the contents of the instruction memory are to be rewritten by the program.

#### 5.1 Boot at Reset

Immediately after release of a hardware reset, the boot program first reads general-purpose I/O port pins P0 to P3, and a boot mode (memory boot/host boot/serial boot) is determined by the bit patterns of these port pins. Once the booting processing has been completed, processing is executed starting from the instruction at address 0x200 (reset entry) of the instruction memory.

| P2 | P1 | P0 | Boot Mode                    |
|----|----|----|------------------------------|
| 0  | 0  | 0  | Non-boot <sup>Note</sup>     |
| 0  | 0  | 1  | X memory initial boot        |
| 0  | 1  | 0  | Y memory initial boot        |
| 0  | 1  | 1  | XY memory initial boot       |
| 1  | 0  | 0  | External memory initial boot |
| 1  | 0  | 1  | Host boot                    |
| 1  | 1  | 0  | Serial boot                  |

**Note** This setting is used when the  $\mu$ PD77210 Family must be reset upon restoration from standby mode after a reset boot has been executed once.

| P3 | PLL lock range |  |  |
|----|----------------|--|--|
| 0  | 120 to 160 MHz |  |  |
| 1  | 80 to 120 MHz  |  |  |

#### 5.1.1 Memory boot

The instruction code stored in data memory is transferred to the instruction RAM. Depending on the data memory from which the instruction code is to be transferred, X memory boot (booting from the X data memory), Y memory boot (booting from the Y data memory), XY memory boot (booting from the X and Y data memories), or external memory boot (booting from the external data memory space) may be performed.

#### 5.1.2 Host boot

The boot parameter and instruction code are obtained via the host interface and transferred to the instruction RAM.

#### 5.1.3 Serial boot

The boot parameter and instruction code are obtained via the serial interface and transferred to the instruction RAM.

#### 5.2 Reboot

The contents of the instruction RAM can be rewritten by calling the following reboot entries by the program.

| R             | Reboot Mode     |         | Parameter                         |                                     |                         |                                             |                                          |
|---------------|-----------------|---------|-----------------------------------|-------------------------------------|-------------------------|---------------------------------------------|------------------------------------------|
|               |                 | Address | Number of<br>Instruction<br>Steps | Transfer<br>Source Start<br>Address | Transfer<br>Destination | Transfer<br>Destination<br>Start<br>Address | Transfer<br>Destination<br>Page<br>(DPR) |
| Memory        | X memory        | 0x1     | R7L                               | DP3                                 | R6L                     | DP2                                         | R5L                                      |
| reboot        | Y memory        | 0x2     | R7L                               | DP7                                 | R6L                     | DP6                                         | R5L                                      |
|               | XY memories     | 0x3     | R7L                               | DP3, DP7                            | R6L                     | DP2                                         | R5L                                      |
|               | External memory | 0x4     | R7L                               | DP3                                 | R6L                     | DP2                                         | R5L                                      |
| Host reboot   |                 | 0x5     | R7L                               | _                                   | R6L                     | DP2                                         | R5L                                      |
| Serial reboot |                 | 0x6     | R7L                               | _                                   | R6L                     | DP2                                         | R5L                                      |

#### 5.2.1 Memory reboot

The instruction code stored into data memory is transferred to the instruction RAM. Depending on the data memory from which the instruction code is to be transferred, X memory reboot (rebooting from the X data memory), Y memory reboot (rebooting from the Y data memory), XY memory reboot (rebooting from the X and Y data memories), or external memory reboot (rebooting from the external data memory space) may be performed.

Perform memory rebooting by setting the following parameters and calling the entry address by the corresponding rebooting method.

- R7L: Number of instruction steps to be rebooted
- DP3: First address of X memory storing instruction code (to reboot from X, XY or external memories)
- DP7: First address of X memory storing instruction code (to reboot from Y or XY memories)
- R6L: Transfer source data page register (DPR) (Specify 0x00 in the case of the internal data RAM area.) Index register (for external memory rebooting)
- DP2: Transfer destination address of the instruction to be rebooted (to reboot from X, XY or external memories)
- DP6: Transfer destination address of the instruction to be rebooted (to reboot from Y memories)
- R5L: Transfer destination page register (DPR) (Specify 0x80 in the case of the internal instruction RAM area.)

# 5.2.2 Host reboot

The instruction code is obtained via the host interface and transferred to the instruction RAM.

The entry address is 0x5. Host rebooting is executed by setting the following parameters and then calling this address.

- R7L: Number of instruction steps to be rebooted
- R6L: Host status register (HST)
- DP2: Transfer destination address of instruction to be rebooted (offset 0x8000 in the case of internal instruction RAM area)
- R5L: Transfer destination data page register (DPR) (Specify 0x80 of the internal instruction RAM area.)

# 5.2.3 Serial reboot

The instruction code is obtained via the serial interface (TDMSIO) and then transferred to the instruction RAM.

The entry address is 0x6. Host rebooting is executed by setting the following parameters and then calling this address.

- R7L: Number of instruction steps to be rebooted
- R6L: Serial status register (SST) (Specify 0x0EC0.)
- DP2: Transfer destination address of instruction to be rebooted (offset 0x8000 in the case of internal instruction RAM area)
- R5L: Transfer destination data page register (DPR) (Specify 0x80 of the internal instruction RAM area.)

# 6. STANDBY MODE

The  $\mu$ PD77210 Family can be set to either of two standby modes. Each mode can be set by executing the corresponding instruction. The power consumption can be reduced in these modes.

#### 6.1 Halt Mode

The halt mode can be set by executing the HALT instruction. In this mode, all the functions except the clock circuit and PLL are stopped and, therefore, the current consumption can be reduced.

The device can be released from this mode by an interrupt or hardware reset. To release the device from halt mode by issuing an interrupt, the contents of the internal registers and memories are retained. It takes 10 to 20 system clocks to release the  $\mu$ PD77210 Family from halt mode (if it is released by an interrupt).

When releasing the device from halt mode by using hardware reset, the external clock must be selected as the clock source in advance that the contents of memories are retain.

In halt mode, the clock circuit of the  $\mu$ PD77210 Family supplies the clock divided by the ratio specified by the CLKC register as the internal system clock. The same applies to the clock output by the CLKOUT pin.

#### 6.2 Stop Mode

Stop mode is set when a STOP instruction is executed. In this mode, supply of the clock to the internal system is stopped.

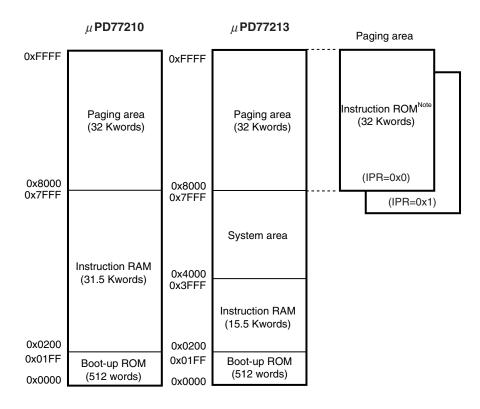
If the PLL is stopped before stop mode is set, all the functions, including the clock circuit and PLL, are stopped. As a result, only a leakage current flows and, therefore, the current consumption can be minimized. In this case, the external clock must be selected as the clock source in advance.

The device is released from stop mode by a hardware reset or the CSTOP pin.

To release the device from stop mode by using the CSTOP pin, the contents of the internal registers and memories are retained. When releasing the device from stop mode by using hardware reset, the external clock must be selected as the clock source in advance that the contents of memories are retain.

# 7. MEMORY MAP

The  $\mu$ PD77210 Family employs a Harvard architecture that separates the instruction memory space from the data memory space.


#### 7.1 Instruction Memory

#### 7.1.1 Instruction memory map

The instruction memory space consists of 64 Kwords  $\times$  32 bits. The area at addresses 0x8000 to 0xFFFF is a paging area that supports a memory space of 64 Kwords or more by specifying a page by using the instruction paging register (IPR).

The instruction ROM of the  $\mu$ PD77213 exists in the paging area and is accessed as IPR=0x0 or 0x1.

The paging area of the  $\mu$ PD77210 is reserved for future expansion.



Note The higher 8 words of the instruction ROM (0xFFF8 to 0xFFFF) constitute system area.

Caution Programs and data cannot be allocated to the system area, and neither can it be accessed. If these addresses are accessed, correct operation of the device is not guaranteed. A paging area in which no IPR page exists cannot be accessed. If this kind of paging area is accessed, correct operation of the device is not guaranteed.

# 7.1.2 Interrupt vector table

Addresses 0x200 to 0x23F of the instruction memory are assigned to entry points (vectors) of interrupts. Four instruction addresses are assigned to each interrupt source.

Four interrupt sources are assigned to each interrupt vector. There are 12 vectors. By identifying the source in the vector, the  $\mu$ PD77210 can use 38 interrupt sources and  $\mu$ PD77213 can use 42 interrupt sources.

Each of these interrupt sources can be masked by using the interrupt control register (ICR0 to ICR11).

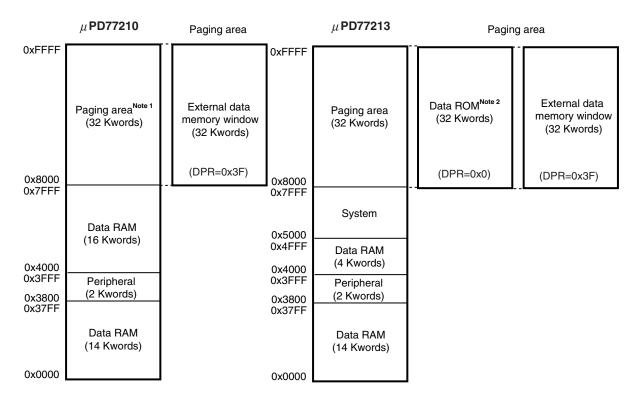
| Vector |            | Interrupt Source |              |                              |  |  |
|--------|------------|------------------|--------------|------------------------------|--|--|
|        | 0          | 1                | 2            | 3                            |  |  |
| 0x200  | Reset      | Reserved         | Reserved     | Reserved                     |  |  |
| 0x204  | Reserved   | Reserved         | Reserved     | Reserved                     |  |  |
| 0x208  | Reserved   | Reserved         | Reserved     | Reserved                     |  |  |
| 0x20C  | Reserved   | Reserved         | Reserved     | Reserved                     |  |  |
| 0x210  | INT00      | INT01            | INT02        | INT03                        |  |  |
| 0x214  | INT10      | INT11            | INT12        | INT13                        |  |  |
| 0x218  | INT20      | INT21            | INT22        | INT23                        |  |  |
| 0x21C  | INT30      | INT31            | INT32        | INT33                        |  |  |
| 0x220  | TSI input  | TSIEN            | PMT ch0      | SDCR input <sup>Note</sup>   |  |  |
|        |            |                  | (TSI input)  |                              |  |  |
| 0x224  | TSO output | TSOEN            | PMT ch1      | SDCR output <sup>Note</sup>  |  |  |
|        |            |                  | (TSO output) |                              |  |  |
| 0x228  | ASI input  | ASIEN            | PMT ch2      | SDDAT input <sup>Note</sup>  |  |  |
|        |            |                  | (ASI input)  | (busy release)               |  |  |
| 0x22C  | ASO output | ASOEN            | PMT ch3      | SDDAT output <sup>Note</sup> |  |  |
|        |            |                  | (ASO output) |                              |  |  |
| 0x230  | HI input   | HWR              | PMT ch4      | Reserved                     |  |  |
|        |            |                  | (HI input)   |                              |  |  |
| 0x234  | HO output  | HRD              | PMT ch5      | Reserved                     |  |  |
|        |            |                  | (HO output)  |                              |  |  |
| 0x238  | TIMER ch0  | TIMER ch1        | PMT ch6      | Reserved                     |  |  |
|        |            |                  | (MI input)   |                              |  |  |
| 0x23C  | TIMER ch1  | TIMER ch0        | PMT ch7      | Reserved                     |  |  |
|        |            |                  | (MO output)  |                              |  |  |

**Note** These interrupt sources are for the  $\mu$ PD77213 only. When using the  $\mu$ PD77210, they are reserved.

Cautions 1. Reset is not an interrupt but is used as an entry of a vector.

2. It is recommended that the vector of an interrupt source that is not used branch to an abnormality processing routine.

#### 7.2 Data Memory


#### 7.2.1 Data memory map

The data memory space consists of two planes: the X and Y memory spaces, each of which consists of 64 Kwords  $\times$  16 bits. The area of 0x8000 to 0xFFFF is a paging area that supports a memory space of 64 Kwords or more by specifying a page by using the data paging register (DPR). The DPR can be set in the same manner regardless of whether the X or Y memory space is accessed.

Page 0x3F of DPR is a window to the external data memory. The Data ROM of the  $\mu$ PD77213 exists in the paging area and is accessed as DPR=0x0.

Page 0x80 of the DPR is shared by 0x0000 to 0x7FFF of the internal instruction RAM. The lower 16 bits of the 32-bit instruction RAM constitute the X data memory, while the higher 16 bits are the Y data memory.

Because some pins of the  $\mu$ PD77213 are shared with the SD card interface, the area that can be accessed when the SD card interface is being used is restricted. The address pins MA13 to MA19 are shared with the SD card interface. When the SD card interface is being used, therefore, only the 13-bit address area of MA0 to MA12 (8 Kwords) can be accessed.



- **Notes 1.** If the paging register is set to a value other than 0x3F (external data memory window) or 0x80 (internal instruction RAM area), programs and data cannot be stored to the addresses of the paging area, nor can these addresses be accessed.
  - 2. The higher 8 words of the data ROM (0xFFF8 to 0xFFFF) constitute system area.
- Caution Programs and data cannot be allocated to the system area, and neither can it be accessed. If these addresses are accessed, correct operation of the device is not guaranteed. A paging area in which no DPR page exists cannot be accessed. If this kind of paging area is accessed, correct operation of the device is not guaranteed.

# 7.2.2 Internal peripherals

NEC

The internal peripherals are mapped to the internal data memory space.

# Cautions 1. The register names shown in the above table are not reserved words in either assembler or C. To use these names in assembler or C, therefore, the user must define them.

- 2. The same register is accessed regardless of whether the X memory space or Y memory space is accessed, provided that the address is the same.
- 3. Different registers cannot be accessed simultaneously from the X and Y memory spaces.

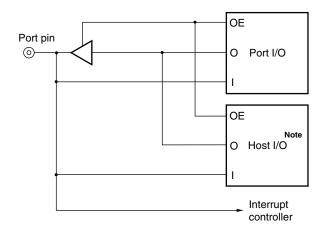
| X/Y Memory Address | Register Name                                              | Function                                          | Peripheral<br>Name |
|--------------------|------------------------------------------------------------|---------------------------------------------------|--------------------|
| 0x3800             | TSDT/SDT1                                                  | TDM serial data register/Serial data register 1   | TSIO(SIO1)         |
| 0x3801 SST1        |                                                            | Serial status register 1                          |                    |
| 0x3802             | TSST TDM serial status register                            |                                                   |                    |
| 0x3803             | TFMT                                                       | TDM frame format register                         |                    |
| 0x3804             | TTXL                                                       | TDM transfer slot register (low)                  |                    |
| 0x3805             | ттхн                                                       | TDM transfer slot register (high)                 |                    |
| 0x3806             | TRXL                                                       | TDM receive slot register (low)                   |                    |
| 0x3807             | TRXH                                                       | TDM receive slot register (high)                  |                    |
| 0x3808 to 0x380F   | Reserved area                                              | Caution Do not access this area.                  | -                  |
| 0x3810             | ASDT/SDT2                                                  | Audio serial data register/Serial data register 2 | ASIO(SIO2)         |
| 0x3811             | SST2                                                       | Serial status register 2                          |                    |
| 0x3812             | ASST                                                       | Audio serial status register                      |                    |
| 0x3813 to 0x381F   | Reserved area                                              | Caution Do not access this area.                  | _                  |
| 0x3820             | HDT                                                        | Host interface data register                      | HIO                |
| 0x3821 HST Host    |                                                            | Host interface status register                    |                    |
| 0x3822 to 0x383F   | Reserved area                                              | Caution Do not access this area.                  | _                  |
| 0x3840             | MDT                                                        | Memory data register                              | MIO                |
| 0x3841             | MSHW Memory I/F setup/hold width setting register          |                                                   |                    |
| 0x3842             | MCST                                                       | Memory I/F control/status register                |                    |
| 0x3843             | MWAIT                                                      | Memory I/F wait register                          |                    |
| 0x3844             | MIDX                                                       | Direct access index register                      |                    |
| 0x3845             | MADRLI                                                     | Memory I/F input start address register (low)     |                    |
| 0x3846             | MADRHI                                                     | Memory I/F input start address register (high)    |                    |
| 0x3847             | MOFSI                                                      | Memory I/F input line offset register             |                    |
| 0x3848             | MLENI                                                      | Memory I/F input line length register             |                    |
| 0x3849             | MADRLO                                                     | Memory I/F output start address register (low)    |                    |
| 0x384A             | MADRHO                                                     | Memory I/F output start address register (high)   |                    |
| 0x384B             | MOFSO                                                      | Memory I/F output line offset register            |                    |
| 0x384C             | MLENO                                                      | Memory I/F output line length register            |                    |
| 0x384D to 0x384F   | D to 0x384F Reserved area Caution Do not access this area. |                                                   | _                  |
| 0x3850             | 0x3850 PMSA0 PMT start address regis                       |                                                   | PMT ch0            |
| 0x3851             | PMS0                                                       | PMT size register 0                               |                    |
| 0x3852             | PMC0                                                       | PMT control register 0                            |                    |
| 0x3853             | PMP0                                                       | PMT address pointer 0                             |                    |

#### Memory-Mapped Peripherals (1/3)

# Memory-Mapped Peripherals (2/3)

| X/Y Memory Address                                                                                                     | Register Name            | Function                         | Peripheral<br>Name |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|--------------------|--|
| x3854 PMSA1 PMT start address register 1                                                                               |                          | PMT start address register 1     | PMT ch1            |  |
| 0x3855 PMS1                                                                                                            |                          | PMT size register 1              |                    |  |
| 0x3856                                                                                                                 | PMC1                     | PMT control register 1           |                    |  |
| 0x3857 PMP1 PMT address pointer 1                                                                                      |                          | PMT address pointer 1            |                    |  |
| 0x3858 PMSA2 PMT start address register 2                                                                              |                          | PMT ch2                          |                    |  |
| 0x3859                                                                                                                 | PMS2                     | PMT size register 2              |                    |  |
| x385A PMC2 PMT control register 2                                                                                      |                          |                                  |                    |  |
| 0x385B                                                                                                                 | PMP2                     | PMT address pointer 2            |                    |  |
| 0x385C                                                                                                                 | PMSA3                    | PMT start address register 3     | PMT ch3            |  |
| 0x385D                                                                                                                 | PMS3 PMT size register 3 |                                  |                    |  |
| 0x385E                                                                                                                 | PMC3                     | PMT control register 3           |                    |  |
| 0x385F                                                                                                                 | PMP3                     | PMT address pointer 3            |                    |  |
| 0x3860                                                                                                                 | PMSA4                    | PMT start address register 4     | PMT ch4            |  |
| 0x3861                                                                                                                 | PMS4                     | PMT size register 4              |                    |  |
| 0x3862                                                                                                                 | PMC4                     | PMT control register 4           |                    |  |
| 0x3863                                                                                                                 | PMP4                     | PMT address pointer 4            |                    |  |
| XX3863         PMF4         PMF1 address pointer 4           XX3864         PMSA5         PMT start address register 5 |                          | PMT start address register 5     | PMT ch5            |  |
| 0x3865 PMS5                                                                                                            |                          | PMT size register 5              |                    |  |
| 0x3866                                                                                                                 | PMC5                     | PMT control register 5           |                    |  |
| 0x3867 PMP5                                                                                                            |                          | PMT address pointer 5            |                    |  |
| 0x3868                                                                                                                 |                          |                                  | PMT ch6            |  |
| 0x3869                                                                                                                 | PMS6                     | PMT size register 6              |                    |  |
| 0x386A                                                                                                                 | PMC6                     | PMT control register 6           |                    |  |
| 0x386B                                                                                                                 | PMP6                     | PMT address pointer 6            |                    |  |
| 0x386C                                                                                                                 | PMSA7                    | PMT start address register 7     | PMT ch7            |  |
| 0x386D                                                                                                                 | PMS7                     | PMT size register 7              |                    |  |
| 0x386E                                                                                                                 | PMC7                     | PMT control register 7           |                    |  |
| 0x386F                                                                                                                 | PMP7                     | PMT address pointer 7            |                    |  |
| 0x3870                                                                                                                 | PDT0                     | Port data register 0             | PIO                |  |
| 0x3871                                                                                                                 | PCD0                     | Port command register 0          |                    |  |
| 0x3872                                                                                                                 | PDT1                     | Port data register 1             |                    |  |
| 0x3873                                                                                                                 | PCD1                     | Port command register 1          |                    |  |
| 0x3874                                                                                                                 | PDT2                     | Port data register 2             |                    |  |
| 0x3875                                                                                                                 | PCD2                     | Port command register 2          |                    |  |
| 0x3876                                                                                                                 | PDT3                     | Port data register 3             |                    |  |
| 0x3877                                                                                                                 | PCD3                     | Port command register 3          |                    |  |
| 0x3878, 0x3879                                                                                                         | Reserved area            | Caution Do not access this area. |                    |  |
| 0x387A, 0x387B                                                                                                         | POWC                     | Power control register           | Peripheral         |  |
|                                                                                                                        |                          |                                  | STOP mode          |  |

| Memory-Mapped | Peripherals    | (3/3) |
|---------------|----------------|-------|
| memory mapped | i criprici ais | (0,0) |


| X/Y Memory Address | Register Name | Function                                     | Peripheral<br>Name |
|--------------------|---------------|----------------------------------------------|--------------------|
| 0x387C to 0x387F   | Reserved area | Caution Do not access this area.             | _                  |
| 0x3880             | ICR0          | Interrupt control register 0                 | INTC               |
| 0x3881             | ICR1          | Interrupt control register 1                 |                    |
| 0x3882             | ICR2          | Interrupt control register 2                 |                    |
| 0x3883             | ICR3          | Interrupt control register 3                 |                    |
| 0x3884             | ICR4          | Interrupt control register 4                 |                    |
| 0x3885             | ICR5          | Interrupt control register 5                 |                    |
| 0x3886             | ICR6          | Interrupt control register 6                 |                    |
| 0x3887             | ICR7          | Interrupt control register 7                 |                    |
| 0x3888             | ICR8          | Interrupt control register 8                 |                    |
| 0x3889             | ICR9          | Interrupt control register 9                 |                    |
| 0x388A             | ICR10         | Interrupt control register 10                |                    |
| 0x388B             | ICR11         | Interrupt control register 11                |                    |
| 0x388C to 0x388F   | Reserved area | Caution Do not access this area.             | _                  |
| 0x3890             | TIR0          | Timer initial register 0                     | TIMO               |
| 0x3891             | TCR0          | Timer count register 0                       |                    |
| 0x3892             | TCSR0         | Timer control/status register 0              |                    |
| 0x3893             | Reserved area | Caution Do not access this area.             | _                  |
| 0x3894             | TIR1          | Timer initial register 1                     | TIM1               |
| 0x3895             | TCR1          | Timer count register 1                       |                    |
| 0x3896             | TCSR1         | Timer control/status register 1              |                    |
| 0x3897 to 0x389F   | Reserved area | Caution Do not access this area.             | _                  |
| 0x38A0             | CEFR          | Collect enable flag register                 | IMC                |
| 0x38A1             | CPR0          | Collect page register 0                      |                    |
| 0x38A2             | CAR0          | Collect address register 0                   |                    |
| 0x38A3             | CLIR0         | Collect instruction data register (high) 0   |                    |
| 0x38A4             | CUIR0         | Collect instruction data register (low) 0    |                    |
| 0x38A5             | CPR1          | Collect page register 1                      |                    |
| 0x38A6             | CAR1          | Collect address register 1                   |                    |
| 0x38A7             | CLIR1         | Collect instruction data register (high) 1   |                    |
| 0x38A8             | CUIR1         | Collection instruction data register (low) 1 |                    |
| 0x38A9 to 0x38AF   | Reserved area | Caution Do not access this area.             | _                  |
| 0x38B0             | CLKC          | Clock control register                       | CLKC               |
| 0x38B1 to 0x38BF   | Reserved area | Caution Do not access this area.             |                    |
| 0x38C0             | IPR           | Instruction paging register                  | Page register      |
| 0x38C1             | DPR           | Data paging register                         |                    |
| 0x38C2 to 0x38CF   | Reserved area | Caution Do not access this area.             |                    |
| 0x38D0             |               | Additional I/F control register              | Additional IO      |
| 0x38D1-0x3FFF      | Reserved area | Caution Do not access this area.             | _                  |

**Note**  $\mu$ PD77213 only. Do not access 0x38D0 of the  $\mu$ PD77210.

#### 8. GENERAL-PURPOSE PORT AND INTERRUPT

#### 8.1 General-purpose Port Pins

The general-purpose port pins alternate with the interrupt or host interface pins. The configuration of the general-purpose port is illustrated below.



**Note** P0 to P7 do not alternate with the host interfave pins.

#### 8.2 Interrupt Pin

The general-purpose port pin functions as an interrupt pin and the signal input to the port is always input to the interrupt controller. The interrupt controller recognizes the interrupt by detecting a falling edge.

The output of the general-purpose port or host interface pin can be also used as an interrupt input.

Pins HRD, HWR, ASOEN, ASIEN, TSOEN, and TSIEN are connected to the interrupt controller and can be used as interrupt pins.

## 9. INSTRUCTION

#### 9.1 Outline of Instruction

One instruction consists of 32 bits. All the instructions, with some exceptions such as branch instructions, are executed with one system clock. The instruction cycle of the  $\mu$ PD77210 is up to 6.25 ns. The instruction cycle of the  $\mu$ PD77213 is up to 8.33 ns. The following nine types of instructions are available.

#### (1) Trinomial instructions

These instructions specify an operation by the MAC. As the operands, three general-purpose registers can be specified.

#### (2) Binomial instructions

These instructions specify an operation by the MAC, ALU, or BSFT. As the operands, two general-purpose registers can be specified. Some of these instructions allow one immediate value to be specified instead of a general-purpose register.

#### (3) Monomial instructions

These instructions specify an operation by the ALU. As the operand, a general-purpose register can be specified.

#### (4) Load/store instructions

These instructions specify 16-bit data transfer between memory and a general-purpose register. As the operand, any general-purpose register can be specified.

#### (5) Register-to-register transfer instructions

These instructions specify transfer between a general-purpose register and another register.

#### (6) Immediate value setting instructions

These instructions set an immediate value in the general-purpose registers and each register of the address operation unit.

#### (7) Branch instructions

These instructions specify branching of the program.

#### (8) Hardware loop instructions

These instructions specify the repetitive execution of an instruction.

#### (9) Control instructions

These instructions specify program control.

## 9.2 Instruction Set and Its Operation

Describe an operation in the operation field of each instruction in accordance with the description method of the operation representation format of the instruction. If two or more elements are available, select one of them.

#### (a) Correspondence between representation format and selectable register

The representation format and selectable register are as follows:

| Representation<br>Format | Selectable Register                                                    |
|--------------------------|------------------------------------------------------------------------|
| ro, ro', ro"             | R0 to R7                                                               |
| rl, rl'                  | R0L to R7L                                                             |
| rh, rh'                  | R0H to R7H                                                             |
| re                       | R0E to R7E                                                             |
| reh                      | R0EH to R7EH                                                           |
| dp                       | DP0 to DP7                                                             |
| dn                       | DN0 to DN7                                                             |
| dm                       | DMX, DMY                                                               |
| dpx                      | DP0 to DP3                                                             |
| dpy                      | DP4 to DP7                                                             |
| dpx_mod                  | DPn, DPn++, DPn—, DPn##, DPn%%, !DPn## (n = 0 to 3)                    |
| dpy_mod                  | DPn, DPn++, DPn, DPn##, DPn%%, !DPn## (n = 4 to 7)                     |
| dp_imm                   | DPn## imm (n = 0 to 7)                                                 |
| *ххх                     | Contents of memory at address ×××                                      |
|                          | (Example) If the contents of the DP0 register are 1000, *DP0 indicates |
|                          | the contents of memory address 1000.                                   |

#### (b) Modifying data pointer

The data pointer is modified only after memory access. The result of the modification becomes valid starting from the instruction that is executed immediately after. The data pointer cannot be modified without the memory access.

| Example   | Operation                                                   |
|-----------|-------------------------------------------------------------|
| DPn       | Nothing is executed (value of DPn is not changed).          |
| DPn++     | $DPn \leftarrow DPn + 1$                                    |
| DPn       | $DPn \leftarrow DPn - 1$                                    |
| DPn##     | $DPn \leftarrow DPn + DNn$                                  |
|           | (Value of DN0 to DN7 corresponding to DP0 to DP7 is added.) |
|           | Example: DP0 $\leftarrow$ DP0 + DN0                         |
| DPn%%     | (n = 0 to 3) DPn = ((DP∟ + DNn) mod (DMX + 1)) + DPн        |
|           | (n = 4 to 7) DPn = ((DP∟ + DNn) mod (DMY + 1)) + DPн        |
| !DPn##    | Reverses bits of DPn and then accesses DPn.                 |
|           | After memory access, DPn $\leftarrow$ DPn + DNn             |
| DPn## imm | $DPn \leftarrow DPn + imm$                                  |

#### (c) Instructions that can be described simultaneously

Those instructions that can be described simultaneously are indicated by  $\sqrt{.}$ 

## (d) Status of overflow flag (OV)

The status of the overflow flag is indicated by the following symbols:

- •: No change
- $\updownarrow$ : Set to 1 if an overflow occurs.

Caution If an overflow does not occur after an operation, the overflow flag is not reset and its status remains the same as before the operation.

## Instruction Set

| iroup               | Instruction Name                  | Mnemonic                                                            | Operation                                                        |           |          |          | tion:<br>ed S |          |                 |        |      |         | Flag              |
|---------------------|-----------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|-----------|----------|----------|---------------|----------|-----------------|--------|------|---------|-------------------|
| Instruction Group   |                                   |                                                                     |                                                                  | Trinomial | Binomial | Monomial | Load/Store    | Transfer | Immediate Value | Branch | Loop | Control | ٥٧                |
|                     | Multiply add                      | $ro = ro + rh^*rh^2$                                                | $ro \leftarrow ro + rh^*rh^*$                                    |           |          |          |               |          |                 |        |      |         | $\updownarrow$    |
|                     | Multiply sub                      | $ro = ro - rh^*rh'$                                                 | $ro \leftarrow ro - rh^*rh^*$                                    |           |          |          | $\checkmark$  |          |                 |        |      |         | $\Rightarrow$     |
| ration              | Signed/unsigned multiply add      | ro = ro + rh*rl<br>(rl is in positive integer format.)              | $ro \leftarrow ro + rh^*rl$                                      |           |          |          | $\checkmark$  |          |                 |        |      |         | \$                |
| Trinomial operation | Unsigned/unsigned<br>multiply add | ro = ro + rl*rl'<br>(rl and rl' are in positive integer<br>format.) | ro ← ro + rl*rl'                                                 |           |          |          | $\checkmark$  |          |                 |        |      |         | $\Leftrightarrow$ |
|                     | 1-bit shift multiply add          | ro = (ro >> 1) + rh*rh'                                             | $ro \leftarrow ro/2 + rh^*rh^2$                                  |           |          |          |               |          |                 |        |      |         | $\Rightarrow$     |
|                     | 16-bit shift multiply add         | ro = (ro >> 16) + rh*rh'                                            | $ro \leftarrow ro/2 + rh^*rh^*$                                  |           |          |          | $\checkmark$  |          |                 |        |      |         | •                 |
|                     | Multiply                          | ro = rh*rh'                                                         | $ro \leftarrow rh^*rh^*$                                         |           |          |          |               |          |                 |        |      |         |                   |
|                     | Add                               | ro'' = ro + ro'                                                     | ro" ← ro + ro'                                                   |           |          |          |               |          |                 |        |      |         | $\Rightarrow$     |
|                     | Immediate add                     | ro' = ro + imm                                                      | ro' ← ro + imm<br>(where imm ≠ 1)                                |           |          |          |               |          |                 |        |      |         | $\updownarrow$    |
|                     | Sub                               | ro" = ro – ro'                                                      | $ro$ " $\leftarrow$ $ro - ro$ '                                  |           |          |          |               |          |                 |        |      |         | $\uparrow$        |
|                     | Immediate sub                     | ro' = ro – imm                                                      | ro' ← ro – imm<br>(where imm ≠ 1)                                |           |          |          |               |          |                 |        |      |         | €                 |
|                     | Arithmetic right shift            | ro' = ro SRA rl                                                     | $ro' \leftarrow ro >> rl$                                        |           |          |          |               |          |                 |        |      |         |                   |
|                     | Immediate arithmetic right shift  | ro' = ro SRA imm                                                    | $ro' \leftarrow ro >> imm$                                       |           |          |          |               |          |                 |        |      |         | •                 |
|                     | Logical right shift               | ro' = ro SRL rl                                                     | $ro' \leftarrow ro >> rl$                                        |           |          |          |               |          |                 |        |      |         | $\bullet$         |
| operation           | Immediate logical right shift     | ro' = ro SRL imm                                                    | $ro' \leftarrow ro >> imm$                                       |           |          |          |               |          |                 |        |      |         | •                 |
| _                   | Logical left shift                | ro' = ro SLL rl                                                     | ro' ← ro << rl                                                   |           |          |          |               |          |                 |        |      |         | $\bullet$         |
| Binomia             | Immediate logical left<br>shift   | ro' = ro SLL imm                                                    | $ro' \leftarrow ro << imm$                                       |           |          |          |               |          |                 |        |      |         | •                 |
|                     | And                               | ro" = ro & ro'                                                      | ro" ← ro & ro'                                                   |           |          |          |               |          |                 |        |      |         |                   |
|                     | Immediate and                     | ro' = ro & imm                                                      | ro' ← ro & imm                                                   |           |          |          |               |          |                 |        |      |         | $\bullet$         |
|                     | Or                                | ro" = ro   ro'                                                      | ro" ← ro   ro'                                                   |           |          |          |               |          |                 |        |      |         |                   |
|                     | Immediate or                      | ro' = ro   imm                                                      | ro' ← ro   imm                                                   |           |          |          |               |          |                 |        |      |         | $\bullet$         |
|                     | Exclusive or                      | ro" = ro^ro'                                                        | ro" ← ro^ro'                                                     |           |          |          | $\checkmark$  |          |                 |        |      |         | ullet             |
|                     | Immediate exclusive or            | roʻ = ro^imm                                                        | $ro' \leftarrow ro^{imm}$                                        |           |          |          |               |          |                 |        |      |         | •                 |
|                     | Less than                         | ro" = LT (ro, ro')                                                  | if (ro < ro')<br>{ro" ← 0x000000001}<br>else {ro" ← 0x000000000} |           |          |          | $\checkmark$  |          |                 |        |      |         | •                 |

| roup               | Instruction Name | Mnemonic         | Operation                                                                                                                                                                            |           |          |          |              | s Th<br>Simi |                 |        |      |              | Flag              |
|--------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|--------------|--------------|-----------------|--------|------|--------------|-------------------|
| Instruction Group  |                  |                  |                                                                                                                                                                                      | Trinomial | Binomial | Monomial | Load/Store   | Transfer     | Immediate Value | Branch | Loop | Control      | OV                |
|                    | Clear            | CLR (ro)         | ro ← 0x000000000                                                                                                                                                                     |           |          |          |              |              |                 |        |      | $\checkmark$ | •                 |
|                    | Increment        | ro' = ro + 1     | $ro' \leftarrow ro + 1$                                                                                                                                                              |           |          |          |              |              |                 |        |      | $\checkmark$ | $\uparrow$        |
|                    | Decrement        | ro' = ro – 1     | $ro' \leftarrow ro - 1$                                                                                                                                                              |           |          |          |              |              |                 |        |      | $\checkmark$ | $\uparrow$        |
|                    | Absolute value   | ro' = ABS (ro)   | if (ro < 0)<br>{ro' ← −ro}<br>else {ro' ← ro}                                                                                                                                        |           |          |          | $\checkmark$ |              |                 |        |      | $\checkmark$ | $\Rightarrow$     |
|                    | 1's complement   | ro' = ~ro        | ro' ← ~ro                                                                                                                                                                            |           |          |          |              |              |                 |        |      | $\checkmark$ | •                 |
|                    | 2's complement   | ro' = -ro        | ro' ← –ro                                                                                                                                                                            |           |          |          |              |              |                 |        |      | $\checkmark$ | $\uparrow$        |
| tion               | Clip             | ro' = CLIP (ro)  | if (ro > 0x007FFFFFF)<br>{ro' $\leftarrow$ 0x007FFFFFFF}<br>elseif (ro < 0xFF80000000)<br>{ro' $\leftarrow$ 0xFF80000000}<br>else {ro' $\leftarrow$ ro}                              |           |          |          | $\checkmark$ |              |                 |        |      | V            | •                 |
| Monomial operation | Round            | ro' = ROUND (ro) | if (ro > 0x007FFF0000)<br>{ro' $\leftarrow$ 0x007FFF0000}<br>elseif (ro < 0xFF8000000)<br>{ro' $\leftarrow$ 0xFF80000000}<br>else {ro' $\leftarrow$ (ro + 0x8000)<br>& 0xFFFFFF0000} |           |          |          | $\checkmark$ |              |                 |        |      | V            | •                 |
|                    | Exponent         | ro' = EXP (ro)   | $ro' \leftarrow log_2 (1/ro)$                                                                                                                                                        |           |          |          |              |              |                 |        |      | $\checkmark$ | •                 |
|                    | Substitution     | ro' = ro         | $ro' \leftarrow ro$                                                                                                                                                                  |           |          |          |              |              |                 |        |      | $\checkmark$ | •                 |
|                    | Accumulated add  | ro' + = ro       | $ro' \leftarrow ro' + ro$                                                                                                                                                            |           |          |          | $\checkmark$ |              |                 |        |      | $\checkmark$ | $\uparrow$        |
|                    | Accumulated sub  | ro' – = ro       | $ro' \leftarrow ro' - ro$                                                                                                                                                            |           |          |          |              |              |                 |        |      | $\checkmark$ | $\uparrow$        |
|                    | Division         | ro' / = ro       | if (sign (ro') = = sign (ro))<br>{ro' $\leftarrow$ (ro' - ro) << 1}<br>else<br>{ro' $\leftarrow$ (ro' + ro) << 1}<br>if (sign (ro') = = 0)<br>{ro' $\leftarrow$ ro' + 1}             |           |          |          | $\checkmark$ |              |                 |        |      | $\checkmark$ | $\leftrightarrow$ |

| dno,                                 | Instruction Name                    | Mnemonic                     | Operation                                   |              |              |              | tions<br>ed S |          |                 |        |      |              | Flag      |
|--------------------------------------|-------------------------------------|------------------------------|---------------------------------------------|--------------|--------------|--------------|---------------|----------|-----------------|--------|------|--------------|-----------|
| Instruction Group                    |                                     |                              |                                             | Trinomial    | Binomial     | Monomial     | Load/Store    | Transfer | Immediate Value | Branch | Loop | Control      | OV        |
|                                      | Notes 1, 2<br>Parallel load/store   | ro = *dpx_mod ro' = *dpy_mod | $ro \leftarrow *dpx, ro' \leftarrow *dpy$   | $\checkmark$ | $\checkmark$ | $\checkmark$ |               |          |                 |        |      |              | •         |
|                                      |                                     | ro = *dpx_mod *dpy_mod = rh  | $ro \gets *dpx, *dpy \gets rh$              |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | *dpx_mod = rh ro = *dpy_mod  | *dpx $\leftarrow$ rh, ro $\leftarrow$ *dpy  |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | *dpx_mod = rh *dpy_mod = rh' | *dpx $\leftarrow$ rh, *dpy $\leftarrow$ rh' |              |              |              |               |          |                 |        |      |              |           |
|                                      | Notes 1, 2, 3<br>Partial load/store | dest = *dpx_mod              | $dest \gets ^*dpx,$                         |              |              |              |               |          |                 |        |      |              | $\bullet$ |
|                                      |                                     | dest' = *dpy_mod             | dest' ← *dpy                                |              |              |              |               |          |                 |        |      |              |           |
| e                                    |                                     | dest = *dpx_mod              | $dest \gets ^*dpx,$                         |              |              |              |               |          |                 |        |      |              |           |
| l/sto                                |                                     | *dpy_mod = source            | *dpy $\leftarrow$ source                    |              |              |              |               |          |                 |        |      |              |           |
| Load/store                           |                                     | *dpx_mod = source            | *dpx $\leftarrow$ source,                   |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | dest = *dpy_mod              | $dest \gets ^*dpy$                          |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | *dpx_mod = source            | *dpx $\leftarrow$ source,                   |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | *dpy_mod = source'           | *dpy ← source'                              |              |              |              |               |          |                 |        |      |              |           |
|                                      | Direct addressing<br>Note 4         | dest = *addr                 | dest $\leftarrow$ *addr                     |              |              |              |               |          |                 |        |      |              | $\bullet$ |
|                                      | load/store                          | *addr = source               | *addr $\leftarrow$ source                   |              |              |              |               |          |                 |        |      |              |           |
|                                      | Immediate index                     | dest = *dp_imm               | $dest \gets ^*dp$                           |              |              |              |               |          |                 |        |      |              | $\bullet$ |
|                                      | Note 5<br>load/store                | *dp_imm = source             | *dp $\leftarrow$ source                     |              |              |              |               |          |                 |        |      |              |           |
| Register-<br>to-register<br>transfer | Register-to-register                | dest = rl                    | $dest \gets rl$                             |              |              |              |               |          |                 |        |      | $\checkmark$ | ullet     |
| Reg<br>to-re<br>trar                 | Note 6<br>transfer                  | rl = source                  | $rI \leftarrow source$                      |              |              |              |               |          |                 |        |      |              |           |
|                                      | Immediate value setting             | rl = imm                     | $rl \gets mm$                               |              |              |              |               |          |                 |        |      |              | $\bullet$ |
| ting                                 |                                     | (where imm = 0 to 0xFFFF)    |                                             |              |              |              |               |          |                 |        |      |              |           |
| e set                                |                                     | dp = imm                     | $dp \gets imm$                              |              |              |              |               |          |                 |        |      |              |           |
| ∕alu€                                |                                     | (where imm = 0 to 0xFFFF)    |                                             |              |              |              |               |          |                 |        |      |              |           |
| ate v                                |                                     | dn = imm                     | $dn \gets imm$                              |              |              |              |               |          |                 |        |      |              |           |
| Immediate value setting              |                                     | (where imm = 0 to 0xFFFF)    |                                             |              |              |              |               |          |                 |        |      |              |           |
| lmn                                  |                                     | dm = imm                     | $dm \gets imm$                              |              |              |              |               |          |                 |        |      |              |           |
|                                      |                                     | (where imm = 1 to 0xFFFF)    |                                             |              |              |              |               |          |                 |        |      |              |           |

Notes 1. Of the two mnemonics, either or both can be described.

- 2. After transfer, modification specified by mod is performed.
- **3.** dest, dest' = {ro, reh, re, rh, rl}, source, source' = {re, rh, rl}
- 4. dest = {ro, reh, re, rh, rl}, source = {re, rh, rl}, addr = {0: X-0xFFFF: X (X memory), or 0: Y-0xFFFF: Y (Y memory)}
- 5. dest = {ro, reh, re, rh, rl}, source = {re, rh, rl}
- 6. Select any of the registers (except the general-purpose registers) as dest and source.

NEC

| dno               | Instruction Name                     | Mnemonic                                       | Ope                                                                                            | ration                                                                                                                                                                              |           |          |              | tion:<br>ed S |              |                 |              |      |              | Flag |
|-------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------------|---------------|--------------|-----------------|--------------|------|--------------|------|
| Instruction Group |                                      |                                                |                                                                                                |                                                                                                                                                                                     | Trinomial | Binomial | Monomial     | Load/Store    | Transfer     | Immediate Value | Branch       | Loop | Control      | OV   |
|                   | Jump                                 | JMP imm                                        | $PC \gets imm$                                                                                 |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      | $\checkmark$ |      |
|                   | Register-to-register<br>jump         | JMP dp                                         | $PC \gets dp$                                                                                  |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      | $\checkmark$ | •    |
|                   | Subroutine call                      | CALL imm                                       | $SP \leftarrow SP + 1$<br>$STK \leftarrow PC + 1$<br>$PC \leftarrow imm$                       | I                                                                                                                                                                                   |           |          |              |               |              |                 |              |      | $\checkmark$ |      |
| Branch            | Register-to-register subroutine call | CALL dp                                        | $SP \leftarrow SP + 1$<br>$STK \leftarrow PC + 1$<br>$PC \leftarrow dp$                        | l                                                                                                                                                                                   |           |          |              |               |              |                 |              |      | $\checkmark$ | •    |
|                   | Return                               | RET                                            | $PC \leftarrow STK$<br>$SP \leftarrow SP - 1$                                                  |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      | $\checkmark$ | •    |
|                   | Interrupt return                     | RETI                                           | $PC \leftarrow STK$<br>$STK \leftarrow SP - 1$<br>Restores interr                              | upt enable flag.                                                                                                                                                                    |           |          |              |               |              |                 |              |      | $\checkmark$ | •    |
|                   | Repeat                               | REP count                                      | Start<br>During repeat<br>End                                                                  | $\begin{array}{l} RC \leftarrow count \\ RF \leftarrow 0 \\ PC \leftarrow PC \\ RC \leftarrow RC - 1 \\ PC \leftarrow PC + 1 \\ RF \leftarrow 1 \end{array}$                        |           |          |              |               |              |                 |              |      |              |      |
| Hardware loop     | Loop                                 | LOOP count<br>(Instruction of 2 lines or more) |                                                                                                | LC $\leftarrow$ count<br>LF $\leftarrow$ 0<br>PC $\leftarrow$<br>hile PC < LEA)<br>EA) PC $\leftarrow$ LSA<br>LC $\leftarrow$ LC - 1<br>PC $\leftarrow$ PC + 1<br>LF $\leftarrow$ 1 |           |          |              |               |              |                 |              |      |              | •    |
|                   | Loop pop                             | LPOP                                           | $LC \leftarrow LSR3$<br>$LE \leftarrow LSR2$<br>$LS \leftarrow LSR1$<br>$LSP \leftarrow LSP -$ | 1                                                                                                                                                                                   |           |          |              |               |              |                 |              |      |              |      |
|                   | No operation                         | NOP                                            | $PC \gets PC + 1$                                                                              |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      |              |      |
|                   | Halt                                 | HALT                                           | CPU stops.                                                                                     |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      |              |      |
| Control           | Stop                                 | STOP                                           | CPU stops, PL<br>can be stoppe                                                                 |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      |              | •    |
|                   | Condition                            | IF (ro cond)                                   | Condition judg                                                                                 |                                                                                                                                                                                     |           |          | $\checkmark$ |               | $\checkmark$ |                 | $\checkmark$ |      |              |      |
|                   | Forget interrupt                     | FINT                                           | Discards inter                                                                                 |                                                                                                                                                                                     |           |          |              |               |              |                 |              |      |              |      |

 $\star$ 

## **10. ELECTRICAL SPECIFICATIONS**

## Absolute Maximum Ratings (T<sub>A</sub> = +25°C)

| Parameter                     | Symbol | Condition                     | Rating         | Unit |
|-------------------------------|--------|-------------------------------|----------------|------|
| Supply voltage                | IVdd   | For DSP core                  | – 0.5 to + 2.0 | V    |
|                               | EVDD   | For I/O pins                  | – 0.5 to + 4.6 | V    |
| Input voltage                 | Vi     | Vi < EV <sub>DD</sub> + 0.5 V | – 0.5 to + 4.6 | V    |
| Output voltage                | Vo     |                               | - 0.5 to + 4.6 | V    |
| Storage temperature           | Tstg   |                               | – 65 to + 150  | °C   |
| Operating ambient temperature | TA     |                               | – 20 to + 70   | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### **Recommended Operating Conditions**

| Parameter         | Symbol | Condition                                                   | MIN.  | TYP. | MAX. | Unit |
|-------------------|--------|-------------------------------------------------------------|-------|------|------|------|
| Operating voltage | IVdd   | For DSP core (operating speed 120 MHz Max.)                 | 1.425 | 1.50 | 1.65 | V    |
|                   |        | For DSP core (operating speed 160 MHz Max.) <sup>Note</sup> | 1.55  | 1.60 | 1.65 | V    |
|                   | EVDD   | For I/O pins                                                | 2.7   | 3.3  | 3.6  | V    |
| Input voltage     | Vı     |                                                             | 0     |      | EVDD | V    |

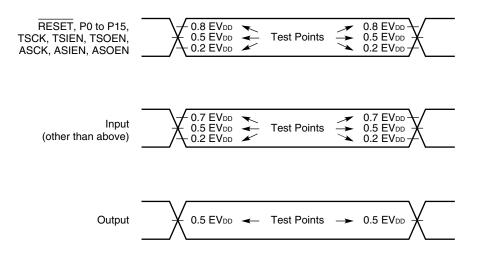
**Note**  $\mu$ PD77210 only

#### Capacitance (TA = +25°C, IVDD = 0 V, EVDD = 0 V)

| Parameter          | Symbol | Condition                         | MIN. | TYP. | MAX. | Unit |
|--------------------|--------|-----------------------------------|------|------|------|------|
| Input capacitance  | Cı     | f = 1 MHz,                        |      | 10   |      | pF   |
| Output capacitance | Co     | Pins other than those tested: 0 V |      | 10   |      | pF   |
| I/O capacitance    | Сю     |                                   |      | 10   |      | pF   |

| DC Characteristics (Unless otherwise specified, T <sub>A</sub> = - 20 to + 70°C, with IV <sub>DD</sub> and EV <sub>DD</sub> within recommended |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| operating condition range)                                                                                                                     |

| Parameter                                                                                                                            | Symbol | Condit                                                                       | ion                  | MIN.     | TYP.                 | MAX.                 | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------|----------------------|----------|----------------------|----------------------|------|
| High level input voltage                                                                                                             | VIHN   | Pins other than be                                                           | elow                 | 0.7 EVDD |                      | EVDD                 | V    |
|                                                                                                                                      | VIHC   | CLKIN                                                                        |                      | 0.7 EVDD |                      | EVDD                 | V    |
|                                                                                                                                      | Vihs   | RESET, P0 to P1<br>TSIEN,TSOEN, A<br>ASOEN                                   |                      | 0.8 EVDD |                      | EVDD                 | V    |
| Low level input voltage                                                                                                              | VILN   | Pins other than be                                                           | elow                 | 0        |                      | 0.2 EV <sub>DD</sub> | V    |
|                                                                                                                                      | VILC   | CLKIN                                                                        |                      | 0        |                      | 0.2 EV <sub>DD</sub> | V    |
|                                                                                                                                      | VILS   | RESET, P0 to P1<br>TSIEN,TSOEN, A<br>ASOEN                                   |                      | 0        |                      | 0.2 EV <sub>DD</sub> | V    |
| High level output voltage                                                                                                            | Vон    | Іон = -100 µА                                                                |                      | 0.8 EVDD |                      |                      | V    |
| Low level output voltage                                                                                                             | Vol    | lo∟ = 2.0 mA                                                                 |                      |          |                      | 0.2 EV <sub>DD</sub> | V    |
| High level input leakage<br>current                                                                                                  | Ilhn   | VI = EVDD                                                                    |                      | 0        |                      | 10                   | μΑ   |
| Low level input leakage current                                                                                                      | Illn   | V1 = 0 V                                                                     |                      | -10      |                      | 0                    | μA   |
| High impedance leakage current                                                                                                       | lız    | $0~V \leq V_{I} \leq EV_{DD}$                                                |                      | 0        |                      | -10                  | μA   |
| Pull-up pin current                                                                                                                  | Ιρυι   | TDI, TMS, 0 V $\leq$ V                                                       | $I_{I} \leq EV_{DD}$ | 20       | 70                   | 200                  | μA   |
| Pull-down pin current                                                                                                                | IPDI   | $\overline{\text{TRST}}$ , 0 V $\leq$ V <sub>I</sub> $\leq$                  | EVDD                 | -20      | -70                  | -200                 | μA   |
| Internal supply current<br>[fclkin = 10 MHz,<br>$IV_{DD} = 1.5 V$ ,                                                                  | Іор    | During operating,<br>fclk = 100 MHz,<br>PLL multiple rate :                  | x10                  |          | 35 <sup>Note 1</sup> | 70 <sup>Note 2</sup> | mA   |
| $\label{eq:ViHN} \begin{split} V_{IHN} &= V_{IHC} = V_{IHS} = EV_{DD}, \\ V_{IL} &= 0~V,~no~load, \\ T_A &= 25^\circ C] \end{split}$ | Ідан   | In halt mode,<br>fclk = 100 MHz,<br>PLL multiple rate :<br>division rate 1/1 | x 10,                |          | 20 <sup>Note 3</sup> |                      | mA   |
|                                                                                                                                      | IDDS   | In stop mode <sup>Note 4</sup> ,                                             | μPD77210             |          | 240                  |                      | μA   |
|                                                                                                                                      |        | fclk = 0 Hz,<br>PLL stop                                                     | μPD77213             |          | 120                  |                      |      |


**Notes 1.** The value is when MAC with Dual Load instruction 50% + nop instruction 50% are executed. It is roughly estimated at 0.35 mA/MHz.

2. The value is when a special program that brings about frequent switching inside the device is executed.

It is roughly estimated at 0.7 mA/MHz.

- **3.** The value is when the division rate is 1/1. It is roughly estimated at 0.2 mA/MHz + IDDS using the divided clock.
- 4. The value in stop mode is the value when PLL is stopped.

#### **Common Test Criteria of Switching Characteristics**



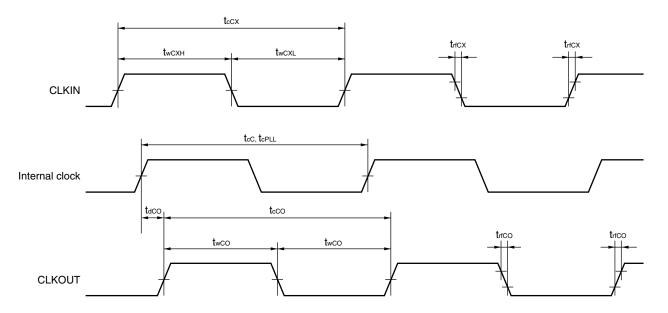
AC Characteristics (T<sub>A</sub> = - 20 to + 70°C, with IV<sub>DD</sub> and EV<sub>DD</sub> within recommended operating condition range)

#### Clock

#### **Timing requirements**

| Parameter                          | Symbol            | Condition                    | MIN. | TYP. | MAX. | Unit |
|------------------------------------|-------------------|------------------------------|------|------|------|------|
| CLKIN cycle time <sup>Note 1</sup> | tccx              |                              | 62.5 |      |      | ns   |
| CLKIN high level width             | t <sub>wCXH</sub> |                              | 12.5 |      |      | ns   |
| CLKIN low level width              | twCXL             |                              | 12.5 |      |      | ns   |
| CLKIN rise/fall time               | tricx             |                              |      |      | 5    | ns   |
| Internal clock cycle time          | t₀c               | Over 120 MHz(µPD77210 only)  | 6.25 |      |      | ns   |
| requirements                       |                   | Under 120 MHz                | 8.33 |      |      | ns   |
| PLL lock-up time                   | <b>t</b> lpll     |                              |      |      | 300  | μs   |
| PLL lock frequency Note 1          | tcPLL             | When boot: $P3 = 0^{Note 2}$ | 120  |      | 160  | MHz  |
|                                    |                   | When boot:P3 = 1             | 80   |      | 120  | MHz  |

**Notes 1.** The CLKIN cycle time must accord with the PLL lock frequency. It is therefore necessary to satisfy both the CLKIN cycle time condition of 62.5 ns (MIN.) and the PLL lock frequency condition of a multiplied frequency in the range of 80 to 160 MHz.


2. In the  $\mu$ PD77213, it can be set only when an external memory boot is being used.

#### Switching characteristics

| Parameter                            | Symbol |       | Condition        | MIN. | TYP.                      | MAX. | Unit |
|--------------------------------------|--------|-------|------------------|------|---------------------------|------|------|
| Internal clock cycle <sup>Note</sup> | tcc    |       |                  |      | $t_{cCX} \div m \times n$ |      | ns   |
| CLKOUT cycle time                    | t₀co   |       |                  |      | tcc                       |      | ns   |
| CLKOUT width                         | twco   | n = 1 |                  |      | tcc ÷ 2                   |      | ns   |
|                                      |        | n ≥ 2 | High level width |      | t₀c ÷ n                   |      | ns   |
|                                      |        |       | Low level width  |      | tcc –                     |      | ns   |
|                                      |        |       |                  |      | t₀c ÷ n                   |      |      |
| CLKOUT rise/fall time                | trfCO  |       |                  |      |                           | 5    | ns   |
| CLKOUT delay time                    | t⊲co   |       |                  |      |                           | 6.25 | ns   |

Note m: Multiple ratio, n: Division ratio (PLL, divider)

## Clock I/O timing

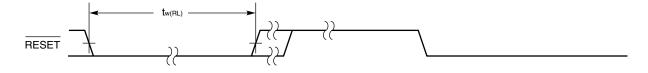


#### Reset, Interrupt, System Control, Timer

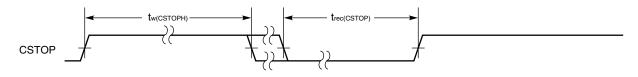
## **Timing requirements**

| Parameter              | Symbol                | Condition | MIN.                                  | TYP. | MAX. | Unit |
|------------------------|-----------------------|-----------|---------------------------------------|------|------|------|
| RESET low level width  | tw(RL)                |           | 6 tccx <sup>Note 1</sup>              |      |      | ns   |
| CSTOP high level width | tw(CSTOPH)            |           | 12 t <sub>c</sub> c <sup>Note 2</sup> |      |      | ns   |
| CSTOP recovery time    | trec(CSTOP)           |           | 12 tcc Note 2                         |      |      | ns   |
| INTmn low level width  | t <sub>w (INTL)</sub> |           | 6 tcc <sup>Note 3</sup>               |      |      | ns   |
| INTmn recovery time    | trec (INT)            |           | 6 t <sub>c</sub> c <sup>Note 3</sup>  |      |      | ns   |

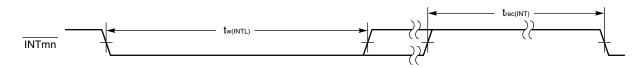
**Notes 1.** When reset timing, it is specified by input clock.


- 2. When STOP or HALT mode, it is specified by divided clock.
- **3.** Interrupt can input by TSIEN, TSOEN, ASIEN, and ASOEN pins other than interrupt pins. The interrupt pins function alternately as pins P0 to P15.

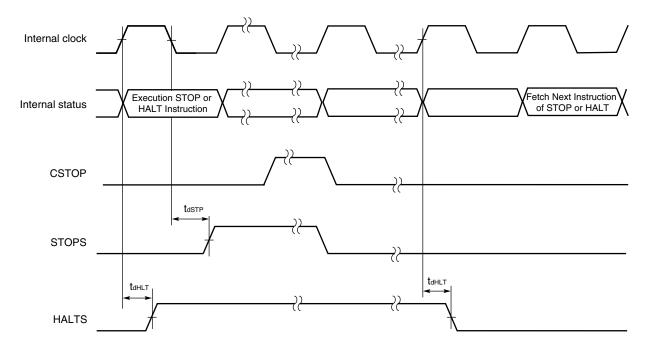
**Remark**  $\overline{\text{INTmn}}$  m, n = 0 to 3


#### Switching characteristics

| Parameter                | Symbol            | Condition | MIN. | TYP.  | MAX. | Unit |
|--------------------------|-------------------|-----------|------|-------|------|------|
| STOPS output delay time  | tdstp             |           | 0    |       | 6.25 | ns   |
| HALTS output delay time  | taн∟⊤             |           | 0    |       | 6.25 | ns   |
| TIMOUT output delay time | tатім             |           | 0    |       | 6.25 | ns   |
| TIMOUT output width      | t <sub>wTIM</sub> |           |      | 4 t₀c |      | ns   |

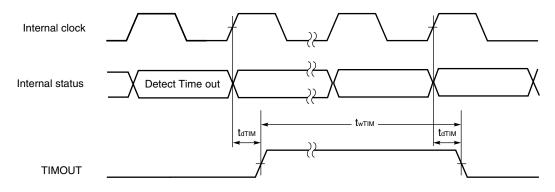

#### **Reset timing**




## WAKEUP timing



## Interrupt timing




## Standby mode status output timing

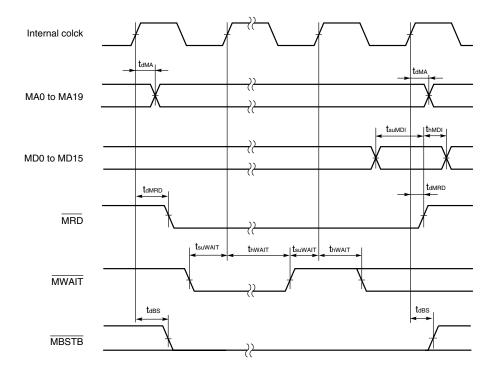


Remarks 1. Internal clock cycle is changed or stopped to be fixed to low level when STOP or HALT mode.2. STOPS pin is become low level asynchronously by CSTOP pin rising edge.

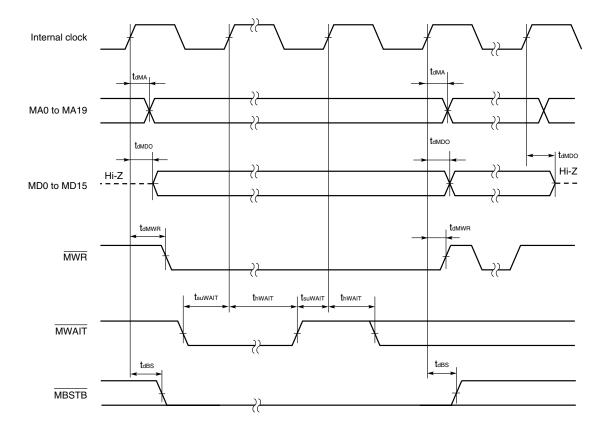
#### Timer time out status output timing



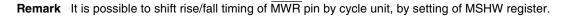
## **External Data Memory Access**


## **Timing requirements**

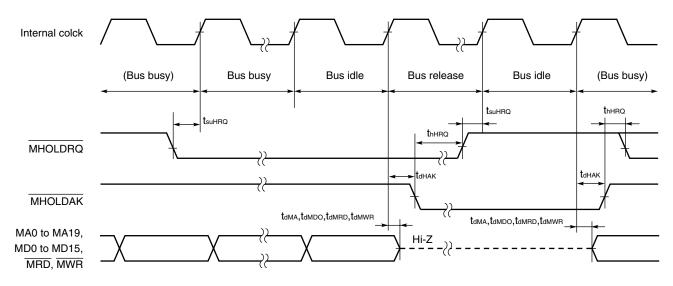
| Parameter          | Symbol        | Condition | MIN.  | TYP. | MAX. | Unit |
|--------------------|---------------|-----------|-------|------|------|------|
| MD setup time      | tsuMDI        |           | 17.5  |      |      | ns   |
| MD hold time       | thMDI         |           | 0     |      |      | ns   |
| MHOLDRQ setup time | tsuHRQ        |           | 11.25 |      |      | ns   |
| MHOLDRQ hold time  | <b>t</b> hHRQ |           | 0     |      |      | ns   |
| MWAIT setup time   | tsuWAIT       |           | 11.25 |      |      | ns   |
| MWAIT hold time    | thwait        |           | 0     |      |      | ns   |


## Switching characteristics

| Parameter                 | Symbol       | Condition | MIN. | TYP. | MAX. | Unit |
|---------------------------|--------------|-----------|------|------|------|------|
| MA output delay time      | <b>t</b> dMA |           | 0    |      | 6.25 | ns   |
| MRD output delay time     | tdMRD        |           | 0    |      | 6.25 | ns   |
| MWR output delay time     | tdMWR        |           | 0    |      | 6.25 | ns   |
| MD output delay time      | tdMDO        |           | 0    |      | 6.25 | ns   |
| MBSTB output delay time   | tdBS         |           | 0    |      | 6.25 | ns   |
| MHOLDAK output delay time | tанак        |           | 0    |      | 6.25 | ns   |


#### External data memory access timing (Read)




**Remark** In the  $\mu$ PD77213, it is possible to shift fall timing of MRD pin by cycle unit, by setting of MSHW register.



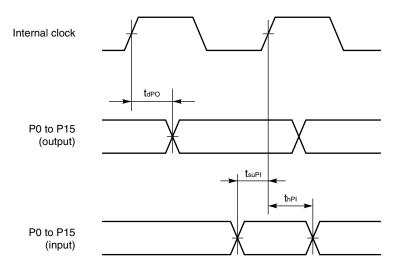
#### External data memory access timing (Write)



## Bus arbitration timing



## General-purpose I/O Port


## **Timing requirements**

| Parameter             | Symbol       | Condition | MIN.  | TYP. | MAX. | Unit |
|-----------------------|--------------|-----------|-------|------|------|------|
| Port input setup time | tsuPI        |           | 11.25 |      |      | ns   |
| Port input hold time  | <b>t</b> hPi |           | 6.25  |      |      | ns   |

## Switching characteristics

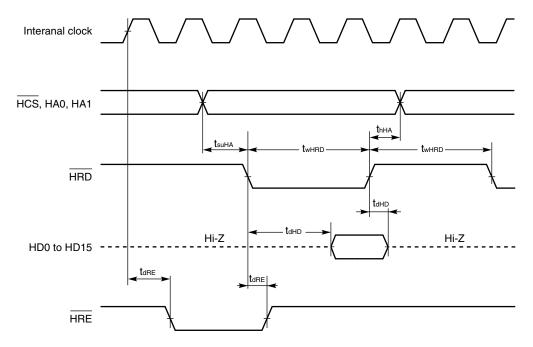
| Parameter              | Symbol           | Condition | MIN. | TYP. | MAX. | Unit |
|------------------------|------------------|-----------|------|------|------|------|
| Port output delay time | t <sub>dPO</sub> |           | 0    |      | 6.25 | ns   |

## General-purpose I/O port timing

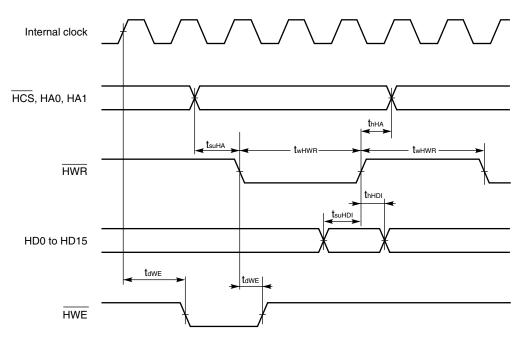


#### **Host Interface**

## **Timing requirements**


| Parameter                          | Symbol       | Condition | MIN.         | TYP. | MAX. | Unit |
|------------------------------------|--------------|-----------|--------------|------|------|------|
| HRD low level width, recovery time | twhrd        |           | <b>3</b> t₀c |      |      | ns   |
| HWR low level width, recovery time | twHWR        |           | 3 t₀c        |      |      | ns   |
| HD setup time                      | tsuHDI       |           | 6.25         |      |      | ns   |
| HD hold time                       | thHDI        |           | 6.25         |      |      | ns   |
| HA, HCS setup time                 | tsuHA        |           | 3            |      |      | ns   |
| HA, HCS hold time                  | <b>t</b> hHA |           | 0            |      |      | ns   |

## Switching characteristics


| Parameter             | Symbol | Condition | MIN. | TYP. | MAX.  | Unit |
|-----------------------|--------|-----------|------|------|-------|------|
| HRE output delay time | tdRE   |           | 0    |      | 11.25 | ns   |
| HWE output delay time | towe   |           | 0    |      | 11.25 | ns   |
| HD output delay time  | tанр   |           | 0    |      | 11.25 | ns   |

# NEC

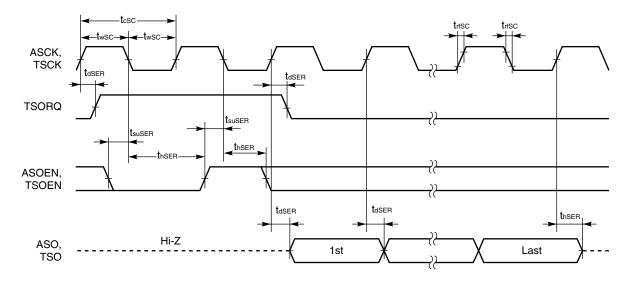
## Host read interface timing



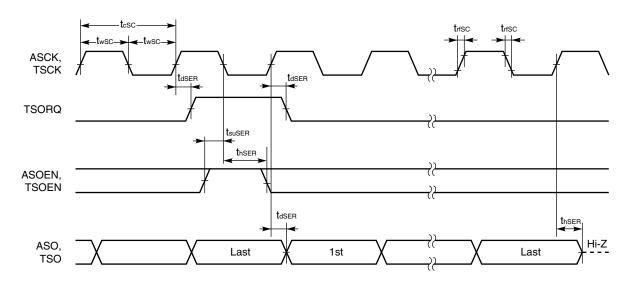
## Host write interface timing



## Serial Interface (Standard Serial mode/ TDM serial mode)


## **Timing requirements**

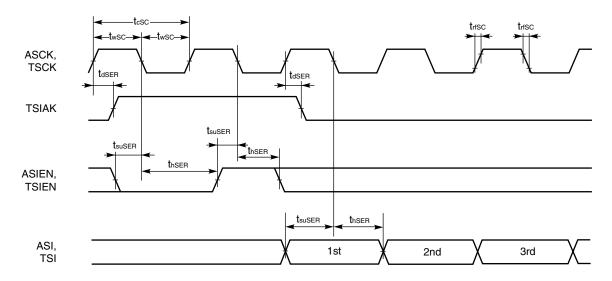
| Parameter                  | Symbol | Condition | MIN.            | TYP. | MAX. | Unit |
|----------------------------|--------|-----------|-----------------|------|------|------|
| ASCK cycle time            | tesc   |           | 50 and<br>2 t₀c |      |      | ns   |
| ASCK high /low level width | twsc   |           | 25              |      |      | ns   |
| ASCK rise/fall time        | trfsc  |           |                 |      | 20   | ns   |
| Serial input setup time    | tsuSER |           | 12.5            |      |      | ns   |
| Serial input hold time     | thSER  |           | 12.5            |      |      | ns   |


## Switching characteristics

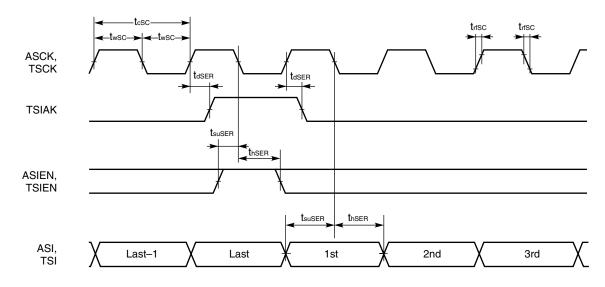
| Parameter                | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
|--------------------------|--------|-----------|------|------|------|------|
| Serial output delay time | tdSER  |           | 0    |      | 17.5 | ns   |

#### Serial output timing 1




Note When TDM mode, TSO output value is delay for a bit according to TDM setting value.




#### Serial output timing 2 (during successive output)

**Note** When TDM mode, TSO output value is delay for a bit or dummy cycle (high impedance) is inserted, according to TDM setting value.

## Serial input timing 1



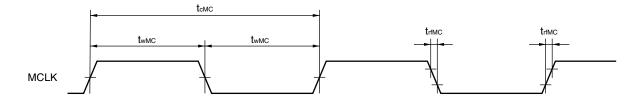
Note When TDM mode, TSI input value is delay for a bit according to TDM setting value.



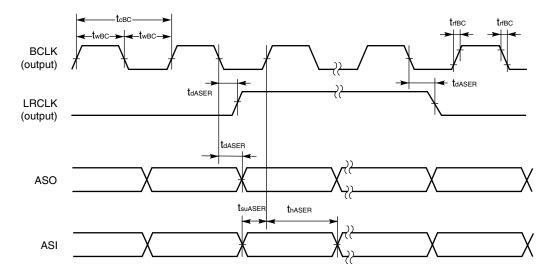
Serial input timing 2 (during successive input)

Note When TDM mode, TSI input value is delay for a bit or skip cycle is input, according to TDM setting value.

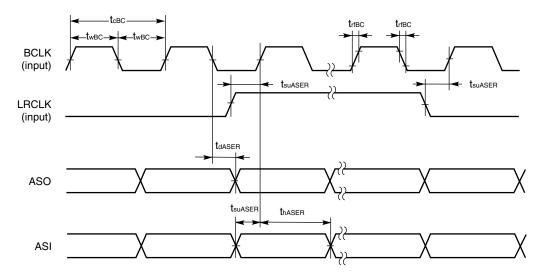
## Serial Interface (Audio Serial mode)


## **Timing requirements**

| Parameter                 | Symbol  | Condition   | MIN.            | TYP. | MAX. | Unit |
|---------------------------|---------|-------------|-----------------|------|------|------|
| MCLK cycle time           | tсмс    | Master mode | 50 and<br>2 t₀c |      |      | ns   |
| MCLK high/low level width | twмc    | Master mode | 25              |      |      | ns   |
| MCLK rise/fall time       | trfMC   | Master mode |                 |      | 20   | ns   |
| BCLK cycle time           | tсвс    | Slave mode  | 50 and<br>8 t₀c |      |      | ns   |
| BCLK high/low level width | twBC    | Slave mode  | 25              |      |      | ns   |
| BCLK rise/fall time       | trfBC   | Slave mode  |                 |      | 20   | ns   |
| Serial input setup time   | tsuASER | Slave mode  | 12.5            |      |      | ns   |
|                           |         | Master mode | 25.0            |      |      | ns   |
| Serial input hold time    | thASER  | Slave mode  | 12.5            |      |      | ns   |
|                           |         | Master mode | 25.0            |      |      | ns   |

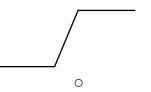

## Switching characteristics

| Parameter                 | Symbol           | Condition   | MIN.            | TYP. | MAX.  | Unit |
|---------------------------|------------------|-------------|-----------------|------|-------|------|
| BCLK cycle time           | tсвс             | Master mode | 50 and<br>8 t₀c |      |       | ns   |
| BCLK high/low level width | t <sub>wBC</sub> | Master mode | 25              |      |       | ns   |
| BCLK rise/fall time       | tнвс             | Master mode |                 |      | 5     | ns   |
| Serial output delay time  | tdASER           | Master mode | -12.5           |      | +25.0 | ns   |
|                           |                  | Slave mode  | 0               |      | 17.5  | ns   |


#### Audio serial clock timing



#### Audio serial master mode timing




## Audio serial slave mode timing



Caution If noise is superimposed on the serial clock, the serial interface may be deadlocked. Bear in mind the following points when designing your system:

- Reinforce the wiring for power supply and ground (if noise is superimposed on the power and ground lines, it has the same effect as if noise were superimposed on the serial clock).
- Shorten the wiring between the device's ASCK, TSCK, BCLK pins, and clock supply source.
- Do not cross the signal lines of the serial clock with any other signal lines. Do not route the serial clock line in the vicinity of a line through which a high alternating current flows.
- Supply the clock to the ASCK, TSCK, BCLK pins of the device from the clock source on a oneto-one basis. Do not supply clock to several devices from one clock source.
- Exercise care that the serial clock does not overshoot or undershoot. In particular, make sure that the rising and falling of the serial clock waveform are clear.



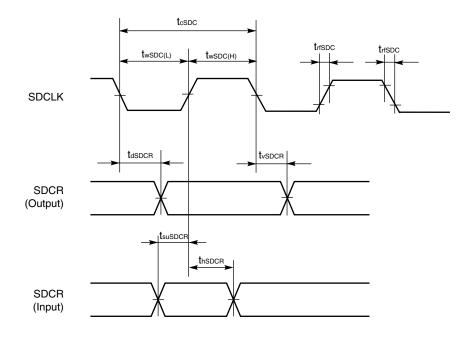
Make sure that the serial clock rises and falls linearly.

The serial clock must not bound. Noise must not be superimposed on the serial clock.

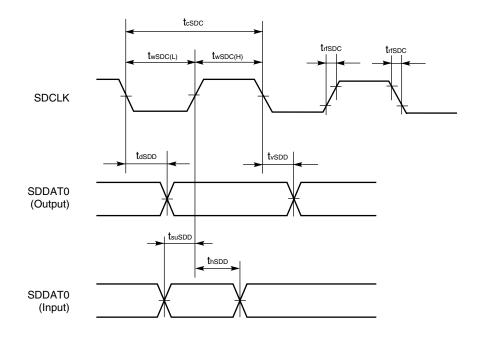
The serial clock must not rise or fall step-wise.

## SD card Interface (µPD77213 only)

## **Timing requirements**


| Parameter              | Symbol  | Condition      | MIN. | TYP. | MAX. | Unit |
|------------------------|---------|----------------|------|------|------|------|
| SDCR input setup time  | tsuSDCR | Input response | 10   |      |      | ns   |
| SDCR input hold time   | thSDCR  | Input response | 0    |      |      | ns   |
| SDDAT input setup time | tsuSDD  | Input data     | 10   |      |      | ns   |
| SDDAT input hold time  | thSDD   | Input data     | 0    |      |      | ns   |

#### Switching characteristics


| Parameter               | Symbol   | Condition      | MIN. | TYP.                    | MAX. | Unit |
|-------------------------|----------|----------------|------|-------------------------|------|------|
| SDCLK cycle time        | tcsDC    |                |      | n x t₀c <sup>Note</sup> |      | ns   |
| SDCLK high level width  | twsdc(H) |                |      | 2 t₀c                   |      | ns   |
| SDCLK low level width   | twsDC(L) |                |      | tcsDC —<br>twsDC(H)     |      | ns   |
| SDCLK rise/fall time    | trfSDC   |                |      |                         | 5    | ns   |
| SDCR output delay time  | tdSDCR   | Output command |      |                         | 10   | ns   |
| SDCR output valid time  | tvsdcr   | Output command | 0    |                         |      | ns   |
| SDDAT output delay time | tdsDD    | Output data    |      |                         | 10   | ns   |
| SDDAT output valid time | tvsdd    | Output data    | 0    |                         |      | ns   |

Note n:SD card clock division ratio

## SDCR timing



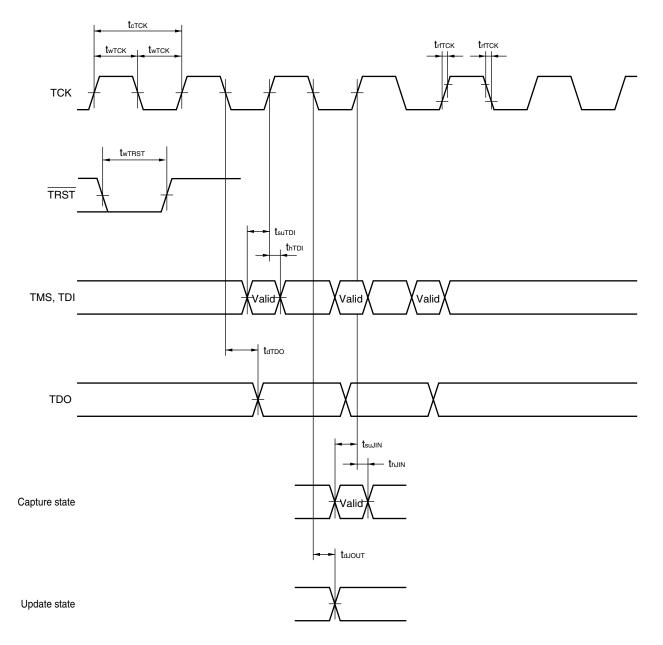
## SDDAT timing



Remark The SDMON pin functions alternately as the external data memory interface pin MA13. When accessing a peripheral register related to the SD card interface, the SDMON (MA13) pin becomes high level, and the MA0 to MA12 pins become low level. For the timing of these pins, refer to External Data Memory Access.

## Debugging Interface (JTAG)

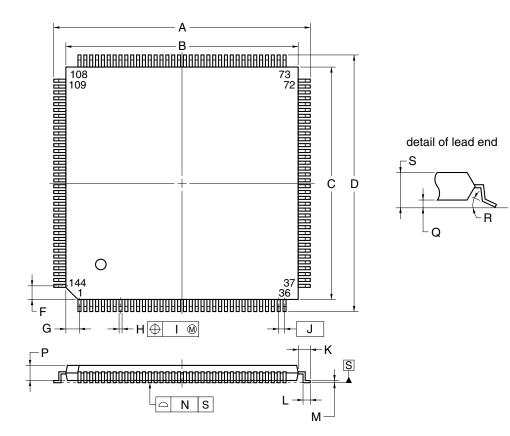
## **Timing requirements**


| Parameter                | Symbol         | Condition | MIN.                            | TYP. | MAX. | Unit |
|--------------------------|----------------|-----------|---------------------------------|------|------|------|
| TCK cycle time           | tстск          |           | 50 and<br>2 t₀c <sup>Note</sup> |      |      | ns   |
| TCK high/low level width | twтск          |           | 25                              |      |      | ns   |
| TCK rise/fall time       | <b>t</b> rfTCK |           |                                 |      | 20   | ns   |
| TDI input setup time     | tsuTDI         |           | 12.5                            |      |      | ns   |
| TDI input hold time      | thtdi          |           | 12.5                            |      |      | ns   |
| Input pin setup time     | tsuJIN         |           | 12.5                            |      |      | ns   |
| Input pin hold time      | thJIN          |           | 12.5                            |      |      | ns   |
| TRST low level width     | twTRST         |           | 100                             |      |      | ns   |

Note When using debugger, the value is 50 and 2 tecx (MIN.).

## Switching characteristics

| Parameter                    | Symbol            | Condition | MIN. | TYP. | MAX. | Unit |
|------------------------------|-------------------|-----------|------|------|------|------|
| TDO output delay time        | t <sub>dTDO</sub> |           | 0    |      | 17.5 | ns   |
| Output pin output delay time | tajout            |           |      |      | 17.5 | ns   |

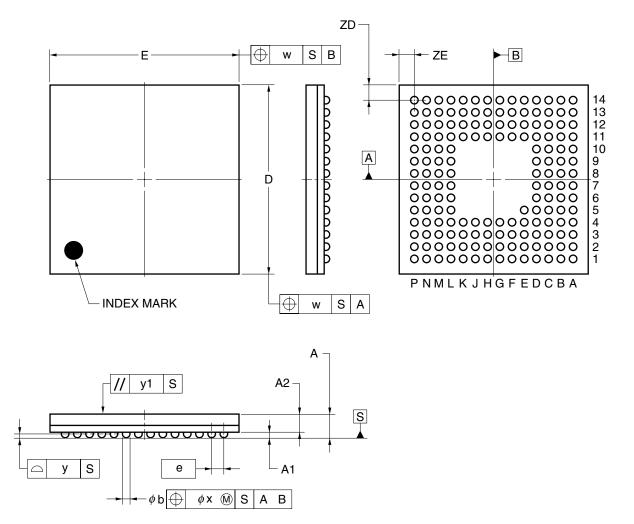

## Debugging interface timing



**Remark** For details of JTAG, refer to **IEEE1149.1**.

## **11. PACKAGE DRAWINGS**

## 144-PIN PLASTIC LQFP (FINE PITCH) (20x20)




#### NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                   |
|------|-------------------------------|
| A    | 22.0±0.2                      |
| В    | 20.0±0.2                      |
| С    | 20.0±0.2                      |
| D    | 22.0±0.2                      |
| F    | 1.25                          |
| G    | 1.25                          |
| н    | 0.22±0.05                     |
| I    | 0.08                          |
| J    | 0.5 (T.P.)                    |
| K    | 1.0±0.2                       |
| L    | 0.5±0.2                       |
| М    | $0.17\substack{+0.03\\-0.07}$ |
| N    | 0.08                          |
| Р    | 1.4±0.05                      |
| Q    | 0.10±0.05                     |
| R    | 3°+4°<br>-3°                  |
| S    | 1.6 MAX.                      |
|      | S144GJ-50-8EN-1               |

## 161-PIN PLASTIC FBGA (10x10)



| ITEM | MILLIMETERS   |
|------|---------------|
| D    | 10.00±0.10    |
| E    | 10.00±0.10    |
| w    | 0.20          |
| А    | 1.23±0.10     |
| A1   | 0.30±0.05     |
| A2   | 0.93          |
| е    | 0.65          |
| b    | 0.40±0.05     |
| х    | 0.08          |
| у    | 0.10          |
| y1   | 0.20          |
| ZD   | 0.775         |
| ZE   | 0.775         |
|      | P161F1-65-DA2 |

## ★ 12. RECOMMENDED SOLDERING CONDITIONS

NEC

The  $\mu$ PD77210 Family should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

#### Surface Mounting Type Soldering Conditions

## $\mu$ PD77210F1-DA2:161-pin plastic fine pitch BGA (10 x 10) $\mu$ PD77213F1-xxx-DA2:161-pin plastic fine pitch BGA (10 x 10)

| Soldering method | Soldering conditions                                                                                                                                                                                                  | Recommended condition symbol |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Infrared reflow  | Package peak temperature: 235 °C, Time: 30 sec. Max. (at 210 °C or higher).<br>Count: two times or less<br>Exposure limit: 7 days <sup>Note</sup> (after that prebaking is necessary at 125 °C for 10 to 72<br>hours) | IR35-107-2                   |

## $\mu$ PD77210GJ-8EN:144-pin plastic LQFP (fine pitch) (20 x 20) $\mu$ PD77213GJ-xxx-8EN:144-pin plastic LQFP (fine pitch) (20 x 20)

| Soldering method | Soldering conditions                                                                                                                                                                                                  | Recommended condition symbol |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Infrared reflow  | Package peak temperature: 235 °C, Time: 30 sec. Max. (at 210 °C or higher).<br>Count: two times or less<br>Exposure limit: 3 days <sup>Note</sup> (after that prebaking is necessary at 125 °C for 10 to 72<br>hours) | IR35-103-2                   |
| Partial heating  | Pin temperature: 300 °C Max. , Time: 3 sec. Max. (per pin row)                                                                                                                                                        | _                            |

Note After opening the dry pack, store it at 25 °C or less and 65 % RH or less for the allowable storage period.

#### Caution Do not use different soldering methods together (except for the partial heating).

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

| NEC Electronics Inc. (U.S.)<br>Santa Clara, California<br>Tel: 408-588-6000<br>800-366-9782<br>Fax: 408-588-6130 | NEC Electronics (Germany) GmbH<br>Benelux Office<br>Eindhoven, The Netherlands<br>Tel: 040-2445845<br>Fax: 040-2444580 | NEC Electronics Hong Kong Ltd.<br>Hong Kong<br>Tel: 2886-9318<br>Fax: 2886-9022/9044 |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 800-729-9288                                                                                                     | NEC Electronics (France) S.A.                                                                                          | NEC Electronics Hong Kong Ltd.<br>Seoul Branch                                       |
| NEC Electronics (Germany) GmbH                                                                                   | Velizy-Villacoublay, France                                                                                            | Seoul, Korea                                                                         |
| Duesseldorf, Germany                                                                                             | Tel: 01-3067-5800                                                                                                      | Tel: 02-528-0303                                                                     |
| Tel: 0211-65 03 02<br>Fax: 0211-65 03 490                                                                        | Fax: 01-3067-5899                                                                                                      | Fax: 02-528-4411                                                                     |
|                                                                                                                  | NEC Electronics (France) S.A.                                                                                          | NEC Electronics Singapore Pte. Ltd.                                                  |
| NEC Electronics (UK) Ltd.                                                                                        | Madrid Office                                                                                                          | Novena Square, Singapore                                                             |
| Milton Keynes, UK                                                                                                | Madrid, Spain                                                                                                          | Tel: 253-8311                                                                        |
| Tel: 01908-691-133                                                                                               | Tel: 091-504-2787                                                                                                      | Fax: 250-3583                                                                        |
| Fax: 01908-670-290                                                                                               | Fax: 091-504-2860                                                                                                      |                                                                                      |
|                                                                                                                  |                                                                                                                        | NEC Electronics Taiwan Ltd.                                                          |
| NEC Electronics Italiana s.r.l.                                                                                  | NEC Electronics (Germany) GmbH                                                                                         | Taipei, Taiwan                                                                       |
| Milano, Italy                                                                                                    | Scandinavia Office                                                                                                     | Tel: 02-2719-2377                                                                    |
| Tel: 02-66 75 41                                                                                                 | Taeby, Sweden                                                                                                          | Fax: 02-2719-5951                                                                    |
| Fax: 02-66 75 42 99                                                                                              | Tel: 08-63 80 820                                                                                                      |                                                                                      |
|                                                                                                                  | Fax: 08-63 80 388                                                                                                      | NEC do Brasil S.A.                                                                   |
|                                                                                                                  |                                                                                                                        | Electron Devices Division                                                            |
|                                                                                                                  |                                                                                                                        | Guarulhos-SP, Brasil                                                                 |
|                                                                                                                  |                                                                                                                        | Tel: 11-6462-6810                                                                    |
|                                                                                                                  |                                                                                                                        | Fax: 11-6462-6829                                                                    |

J01.2

## NOTES FOR CMOS DEVICES -

## **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

#### **②** HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μPD77210F1-DA2, μPD77210GJ-8EN The customer must judge the μPD77213F1-xxx-DA2, μPD77213GJ-xxx-8EN

- The information in this document is current as of November, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
  purposes in semiconductor product operation and application examples. The incorporation of these
  circuits, software and information in the design of customer's equipment shall be done under the full
  responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
  parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
   "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
   developed based on a customer-designated "quality assurance program" for a specific application. The
   recommended applications of a semiconductor product depend on its quality grade, as indicated below.
   Customers must check the quality grade of each semiconductor product before using it in a particular
   application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

"NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).